| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elmapg | GIF version | ||
| Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| elmapg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapvalg 6755 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑𝑚 𝐵) = {𝑔 ∣ 𝑔:𝐵⟶𝐴}) | |
| 2 | 1 | eleq2d 2276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶 ∈ {𝑔 ∣ 𝑔:𝐵⟶𝐴})) |
| 3 | fex2 5451 | . . . . 5 ⊢ ((𝐶:𝐵⟶𝐴 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) | |
| 4 | 3 | 3com13 1211 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶:𝐵⟶𝐴) → 𝐶 ∈ V) |
| 5 | 4 | 3expia 1208 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶:𝐵⟶𝐴 → 𝐶 ∈ V)) |
| 6 | feq1 5415 | . . . 4 ⊢ (𝑔 = 𝐶 → (𝑔:𝐵⟶𝐴 ↔ 𝐶:𝐵⟶𝐴)) | |
| 7 | 6 | elab3g 2926 | . . 3 ⊢ ((𝐶:𝐵⟶𝐴 → 𝐶 ∈ V) → (𝐶 ∈ {𝑔 ∣ 𝑔:𝐵⟶𝐴} ↔ 𝐶:𝐵⟶𝐴)) |
| 8 | 5, 7 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ {𝑔 ∣ 𝑔:𝐵⟶𝐴} ↔ 𝐶:𝐵⟶𝐴)) |
| 9 | 2, 8 | bitrd 188 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑𝑚 𝐵) ↔ 𝐶:𝐵⟶𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 {cab 2192 Vcvv 2773 ⟶wf 5273 (class class class)co 5954 ↑𝑚 cmap 6745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-map 6747 |
| This theorem is referenced by: elmapd 6759 mapdm0 6760 elmapi 6767 elmap 6774 map0e 6783 map0g 6785 fdiagfn 6789 ixpssmap2g 6824 map1 6915 mapxpen 6957 infnninf 7238 isomnimap 7251 enomnilem 7252 ismkvmap 7268 enmkvlem 7275 iswomnimap 7280 enwomnilem 7283 hashfacen 10994 wrdnval 11037 omctfn 12864 pwselbasb 13175 psrbag 14481 iscn 14719 iscnp 14721 cndis 14763 ispsmet 14845 ismet 14866 isxmet 14867 elcncf 15095 elply2 15257 plyf 15259 elplyr 15262 plyaddlem 15271 plymullem 15272 plyco 15281 nnsf 16057 |
| Copyright terms: Public domain | W3C validator |