ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elmapg GIF version

Theorem elmapg 6562
Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
elmapg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴𝑚 𝐵) ↔ 𝐶:𝐵𝐴))

Proof of Theorem elmapg
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 mapvalg 6559 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴𝑚 𝐵) = {𝑔𝑔:𝐵𝐴})
21eleq2d 2210 . 2 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴𝑚 𝐵) ↔ 𝐶 ∈ {𝑔𝑔:𝐵𝐴}))
3 fex2 5298 . . . . 5 ((𝐶:𝐵𝐴𝐵𝑊𝐴𝑉) → 𝐶 ∈ V)
433com13 1187 . . . 4 ((𝐴𝑉𝐵𝑊𝐶:𝐵𝐴) → 𝐶 ∈ V)
543expia 1184 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐶:𝐵𝐴𝐶 ∈ V))
6 feq1 5262 . . . 4 (𝑔 = 𝐶 → (𝑔:𝐵𝐴𝐶:𝐵𝐴))
76elab3g 2838 . . 3 ((𝐶:𝐵𝐴𝐶 ∈ V) → (𝐶 ∈ {𝑔𝑔:𝐵𝐴} ↔ 𝐶:𝐵𝐴))
85, 7syl 14 . 2 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ {𝑔𝑔:𝐵𝐴} ↔ 𝐶:𝐵𝐴))
92, 8bitrd 187 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴𝑚 𝐵) ↔ 𝐶:𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1481  {cab 2126  Vcvv 2689  wf 5126  (class class class)co 5781  𝑚 cmap 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-fv 5138  df-ov 5784  df-oprab 5785  df-mpo 5786  df-map 6551
This theorem is referenced by:  elmapd  6563  mapdm0  6564  elmapi  6571  elmap  6578  map0e  6587  map0g  6589  fdiagfn  6593  ixpssmap2g  6628  map1  6713  mapxpen  6749  isomnimap  7016  enomnilem  7017  ismkvmap  7035  enmkvlem  7042  iswomnimap  7047  enwomnilem  7049  hashfacen  10610  omctfn  11990  iscn  12403  iscnp  12405  cndis  12447  ispsmet  12529  ismet  12550  isxmet  12551  elcncf  12766  nnsf  13372
  Copyright terms: Public domain W3C validator