ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltso GIF version

Theorem xrltso 9862
Description: 'Less than' is a weakly linear ordering on the extended reals. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltso < Or ℝ*

Proof of Theorem xrltso
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltnr 9845 . . . . 5 (𝑥 ∈ ℝ* → ¬ 𝑥 < 𝑥)
21adantl 277 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ*) → ¬ 𝑥 < 𝑥)
3 xrlttr 9861 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
43adantl 277 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*)) → ((𝑥 < 𝑦𝑦 < 𝑧) → 𝑥 < 𝑧))
52, 4ispod 4335 . . 3 (⊤ → < Po ℝ*)
65mptru 1373 . 2 < Po ℝ*
7 elxr 9842 . . . . 5 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
8 elxr 9842 . . . . . . . . . 10 (𝑦 ∈ ℝ* ↔ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞))
9 elxr 9842 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ* ↔ (𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞))
10 simplr 528 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
11 simpll 527 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℝ)
12 simpr 110 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
13 axltwlin 8087 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
1410, 11, 12, 13syl3anc 1249 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
15 ltpnf 9846 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → 𝑥 < +∞)
1615ad2antlr 489 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < +∞)
17 breq2 4033 . . . . . . . . . . . . . . . . . . 19 (𝑧 = +∞ → (𝑥 < 𝑧𝑥 < +∞))
1817adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑥 < +∞))
1916, 18mpbird 167 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < 𝑧)
2019orcd 734 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑧 < 𝑦))
2120a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
22 mnflt 9849 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ → -∞ < 𝑦)
2322ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → -∞ < 𝑦)
24 breq1 4032 . . . . . . . . . . . . . . . . . . 19 (𝑧 = -∞ → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
2524adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑧 < 𝑦 ↔ -∞ < 𝑦))
2623, 25mpbird 167 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → 𝑧 < 𝑦)
2726olcd 735 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑧𝑧 < 𝑦))
2827a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
2914, 21, 283jaodan 1317 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
309, 29sylan2b 287 . . . . . . . . . . . . 13 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
3130anasss 399 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
3231ancoms 268 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
33 ltpnf 9846 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ℝ → 𝑧 < +∞)
3433adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 < +∞)
35 breq2 4033 . . . . . . . . . . . . . . . . . . 19 (𝑦 = +∞ → (𝑧 < 𝑦𝑧 < +∞))
3635ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑧 < 𝑦𝑧 < +∞))
3734, 36mpbird 167 . . . . . . . . . . . . . . . . 17 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝑧 < 𝑦)
3837olcd 735 . . . . . . . . . . . . . . . 16 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑧𝑧 < 𝑦))
3938a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
4015ad2antlr 489 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < +∞)
4117adantl 277 . . . . . . . . . . . . . . . . . 18 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑥 < +∞))
4240, 41mpbird 167 . . . . . . . . . . . . . . . . 17 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → 𝑥 < 𝑧)
4342orcd 734 . . . . . . . . . . . . . . . 16 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑧𝑧 < 𝑦))
4443a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
45 mnfltpnf 9851 . . . . . . . . . . . . . . . . . . 19 -∞ < +∞
46 breq12 4034 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 = -∞ ∧ 𝑦 = +∞) → (𝑧 < 𝑦 ↔ -∞ < +∞))
4746ancoms 268 . . . . . . . . . . . . . . . . . . 19 ((𝑦 = +∞ ∧ 𝑧 = -∞) → (𝑧 < 𝑦 ↔ -∞ < +∞))
4845, 47mpbiri 168 . . . . . . . . . . . . . . . . . 18 ((𝑦 = +∞ ∧ 𝑧 = -∞) → 𝑧 < 𝑦)
4948adantlr 477 . . . . . . . . . . . . . . . . 17 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → 𝑧 < 𝑦)
5049olcd 735 . . . . . . . . . . . . . . . 16 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑧𝑧 < 𝑦))
5150a1d 22 . . . . . . . . . . . . . . 15 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
5239, 44, 513jaodan 1317 . . . . . . . . . . . . . 14 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
539, 52sylan2b 287 . . . . . . . . . . . . 13 (((𝑦 = +∞ ∧ 𝑥 ∈ ℝ) ∧ 𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
5453anasss 399 . . . . . . . . . . . 12 ((𝑦 = +∞ ∧ (𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
5554ancoms 268 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
56 rexr 8065 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
57 nltmnf 9854 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
5856, 57syl 14 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → ¬ 𝑥 < -∞)
5958ad2antrr 488 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → ¬ 𝑥 < -∞)
60 breq2 4033 . . . . . . . . . . . . . 14 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
6160adantl 277 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑥 < 𝑦𝑥 < -∞))
6259, 61mtbird 674 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → ¬ 𝑥 < 𝑦)
6362pm2.21d 620 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
6432, 55, 633jaodan 1317 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ (𝑦 ∈ ℝ ∨ 𝑦 = +∞ ∨ 𝑦 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
658, 64sylan2b 287 . . . . . . . . 9 (((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
6665anasss 399 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ (𝑧 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
6766ancoms 268 . . . . . . 7 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
68 pnfnlt 9853 . . . . . . . . . 10 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
6968ad2antlr 489 . . . . . . . . 9 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → ¬ +∞ < 𝑦)
70 breq1 4032 . . . . . . . . . 10 (𝑥 = +∞ → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
7170adantl 277 . . . . . . . . 9 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → (𝑥 < 𝑦 ↔ +∞ < 𝑦))
7269, 71mtbird 674 . . . . . . . 8 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → ¬ 𝑥 < 𝑦)
7372pm2.21d 620 . . . . . . 7 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = +∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
74 df-3or 981 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∨ 𝑧 = +∞ ∨ 𝑧 = -∞) ↔ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∨ 𝑧 = -∞))
759, 74bitri 184 . . . . . . . . . 10 (𝑧 ∈ ℝ* ↔ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∨ 𝑧 = -∞))
76 mnfltxr 9852 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) → -∞ < 𝑧)
7776adantl 277 . . . . . . . . . . . . . 14 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → -∞ < 𝑧)
78 breq1 4032 . . . . . . . . . . . . . . 15 (𝑥 = -∞ → (𝑥 < 𝑧 ↔ -∞ < 𝑧))
7978adantr 276 . . . . . . . . . . . . . 14 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → (𝑥 < 𝑧 ↔ -∞ < 𝑧))
8077, 79mpbird 167 . . . . . . . . . . . . 13 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → 𝑥 < 𝑧)
8180orcd 734 . . . . . . . . . . . 12 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → (𝑥 < 𝑧𝑧 < 𝑦))
8281a1d 22 . . . . . . . . . . 11 ((𝑥 = -∞ ∧ (𝑧 ∈ ℝ ∨ 𝑧 = +∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
83 eqtr3 2213 . . . . . . . . . . . . 13 ((𝑥 = -∞ ∧ 𝑧 = -∞) → 𝑥 = 𝑧)
8483breq1d 4039 . . . . . . . . . . . 12 ((𝑥 = -∞ ∧ 𝑧 = -∞) → (𝑥 < 𝑦𝑧 < 𝑦))
85 olc 712 . . . . . . . . . . . 12 (𝑧 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))
8684, 85biimtrdi 163 . . . . . . . . . . 11 ((𝑥 = -∞ ∧ 𝑧 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
8782, 86jaodan 798 . . . . . . . . . 10 ((𝑥 = -∞ ∧ ((𝑧 ∈ ℝ ∨ 𝑧 = +∞) ∨ 𝑧 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
8875, 87sylan2b 287 . . . . . . . . 9 ((𝑥 = -∞ ∧ 𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
8988ancoms 268 . . . . . . . 8 ((𝑧 ∈ ℝ*𝑥 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
9089adantlr 477 . . . . . . 7 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = -∞) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
9167, 73, 903jaodan 1317 . . . . . 6 (((𝑧 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
92913impa 1196 . . . . 5 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ* ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
937, 92syl3an3b 1287 . . . 4 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
94933com13 1210 . . 3 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
9594rgen3 2581 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))
96 df-iso 4328 . 2 ( < Or ℝ* ↔ ( < Po ℝ* ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ* (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦))))
976, 95, 96mpbir2an 944 1 < Or ℝ*
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  w3o 979  w3a 980   = wceq 1364  wtru 1365  wcel 2164  wral 2472   class class class wbr 4029   Po wpo 4325   Or wor 4326  cr 7871  +∞cpnf 8051  -∞cmnf 8052  *cxr 8053   < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-po 4327  df-iso 4328  df-xp 4665  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059
This theorem is referenced by:  xrlelttr  9872  xrltletr  9873  xrletr  9874  xrmaxiflemlub  11391
  Copyright terms: Public domain W3C validator