ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oaword1 GIF version

Theorem oaword1 6474
Description: An ordinal is less than or equal to its sum with another. Part of Exercise 5 of [TakeutiZaring] p. 62. (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
oaword1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))

Proof of Theorem oaword1
StepHypRef Expression
1 oa0 6460 . . 3 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
21adantr 276 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
3 0ss 3463 . . 3 ∅ ⊆ 𝐵
4 0elon 4394 . . . 4 ∅ ∈ On
5 oawordi 6472 . . . . 5 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 → (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)))
653com13 1208 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ ∅ ∈ On) → (∅ ⊆ 𝐵 → (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)))
74, 6mp3an3 1326 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ⊆ 𝐵 → (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵)))
83, 7mpi 15 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) ⊆ (𝐴 +o 𝐵))
92, 8eqsstrrd 3194 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +o 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wss 3131  c0 3424  Oncon0 4365  (class class class)co 5877   +o coa 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-recs 6308  df-irdg 6373  df-oadd 6423
This theorem is referenced by:  omsuc  6475  nnaword1  6516
  Copyright terms: Public domain W3C validator