Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3adant3r | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3com13 1198 | . . 3 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
3 | 2 | 3adant1r 1221 | . 2 ⊢ (((𝜒 ∧ 𝜏) ∧ 𝜓 ∧ 𝜑) → 𝜃) |
4 | 3 | 3com13 1198 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: addassnqg 7323 mulassnqg 7325 prarloc 7444 ltpopr 7536 ltexprlemfl 7550 ltexprlemfu 7552 addasssrg 7697 axaddass 7813 apmul1 8684 ltmul2 8751 lemul2 8752 dvdscmulr 11760 dvdsmulcr 11761 modremain 11866 ndvdsadd 11868 rpexp12i 12087 xblcntrps 13053 xblcntr 13054 |
Copyright terms: Public domain | W3C validator |