ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1230
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1203 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1226 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1203 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  addassnqg  7344  mulassnqg  7346  prarloc  7465  ltpopr  7557  ltexprlemfl  7571  ltexprlemfu  7573  addasssrg  7718  axaddass  7834  apmul1  8705  ltmul2  8772  lemul2  8773  dvdscmulr  11782  dvdsmulcr  11783  modremain  11888  ndvdsadd  11890  rpexp12i  12109  xblcntrps  13207  xblcntr  13208
  Copyright terms: Public domain W3C validator