ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1237
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1210 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1233 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1210 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  addassnqg  7466  mulassnqg  7468  prarloc  7587  ltpopr  7679  ltexprlemfl  7693  ltexprlemfu  7695  addasssrg  7840  axaddass  7956  apmul1  8832  ltmul2  8900  lemul2  8901  dvdscmulr  12002  dvdsmulcr  12003  modremain  12111  ndvdsadd  12113  rpexp12i  12348  xblcntrps  14733  xblcntr  14734
  Copyright terms: Public domain W3C validator