ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1196
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1169 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1192 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1169 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 947
This theorem is referenced by:  addassnqg  7138  mulassnqg  7140  prarloc  7259  ltpopr  7351  ltexprlemfl  7365  ltexprlemfu  7367  addasssrg  7499  axaddass  7607  apmul1  8461  ltmul2  8524  lemul2  8525  dvdscmulr  11370  dvdsmulcr  11371  modremain  11474  ndvdsadd  11476  rpexp12i  11679  xblcntrps  12402  xblcntr  12403
  Copyright terms: Public domain W3C validator