ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1259
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1232 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1255 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1232 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  addassnqg  7565  mulassnqg  7567  prarloc  7686  ltpopr  7778  ltexprlemfl  7792  ltexprlemfu  7794  addasssrg  7939  axaddass  8055  apmul1  8931  ltmul2  8999  lemul2  9000  dvdscmulr  12326  dvdsmulcr  12327  modremain  12435  ndvdsadd  12437  rpexp12i  12672  xblcntrps  15081  xblcntr  15082
  Copyright terms: Public domain W3C validator