| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com13 1210 | . . 3 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 3 | 2 | 3adant1r 1233 | . 2 ⊢ (((𝜒 ∧ 𝜏) ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 4 | 3 | 3com13 1210 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: addassnqg 7468 mulassnqg 7470 prarloc 7589 ltpopr 7681 ltexprlemfl 7695 ltexprlemfu 7697 addasssrg 7842 axaddass 7958 apmul1 8834 ltmul2 8902 lemul2 8903 dvdscmulr 12004 dvdsmulcr 12005 modremain 12113 ndvdsadd 12115 rpexp12i 12350 xblcntrps 14757 xblcntr 14758 |
| Copyright terms: Public domain | W3C validator |