ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1225
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1198 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1221 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1198 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  addassnqg  7323  mulassnqg  7325  prarloc  7444  ltpopr  7536  ltexprlemfl  7550  ltexprlemfu  7552  addasssrg  7697  axaddass  7813  apmul1  8684  ltmul2  8751  lemul2  8752  dvdscmulr  11760  dvdsmulcr  11761  modremain  11866  ndvdsadd  11868  rpexp12i  12087  xblcntrps  13053  xblcntr  13054
  Copyright terms: Public domain W3C validator