ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1237
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1210 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1233 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1210 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  addassnqg  7468  mulassnqg  7470  prarloc  7589  ltpopr  7681  ltexprlemfl  7695  ltexprlemfu  7697  addasssrg  7842  axaddass  7958  apmul1  8834  ltmul2  8902  lemul2  8903  dvdscmulr  12004  dvdsmulcr  12005  modremain  12113  ndvdsadd  12115  rpexp12i  12350  xblcntrps  14757  xblcntr  14758
  Copyright terms: Public domain W3C validator