| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com13 1211 | . . 3 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 3 | 2 | 3adant1r 1234 | . 2 ⊢ (((𝜒 ∧ 𝜏) ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 4 | 3 | 3com13 1211 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: addassnqg 7515 mulassnqg 7517 prarloc 7636 ltpopr 7728 ltexprlemfl 7742 ltexprlemfu 7744 addasssrg 7889 axaddass 8005 apmul1 8881 ltmul2 8949 lemul2 8950 dvdscmulr 12206 dvdsmulcr 12207 modremain 12315 ndvdsadd 12317 rpexp12i 12552 xblcntrps 14960 xblcntr 14961 |
| Copyright terms: Public domain | W3C validator |