ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1237
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1210 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1233 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1210 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  addassnqg  7477  mulassnqg  7479  prarloc  7598  ltpopr  7690  ltexprlemfl  7704  ltexprlemfu  7706  addasssrg  7851  axaddass  7967  apmul1  8843  ltmul2  8911  lemul2  8912  dvdscmulr  12050  dvdsmulcr  12051  modremain  12159  ndvdsadd  12161  rpexp12i  12396  xblcntrps  14803  xblcntr  14804
  Copyright terms: Public domain W3C validator