ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1237
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1210 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1233 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1210 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  addassnqg  7442  mulassnqg  7444  prarloc  7563  ltpopr  7655  ltexprlemfl  7669  ltexprlemfu  7671  addasssrg  7816  axaddass  7932  apmul1  8807  ltmul2  8875  lemul2  8876  dvdscmulr  11963  dvdsmulcr  11964  modremain  12070  ndvdsadd  12072  rpexp12i  12293  xblcntrps  14581  xblcntr  14582
  Copyright terms: Public domain W3C validator