| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com13 1210 | . . 3 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 3 | 2 | 3adant1r 1233 | . 2 ⊢ (((𝜒 ∧ 𝜏) ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 4 | 3 | 3com13 1210 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: addassnqg 7477 mulassnqg 7479 prarloc 7598 ltpopr 7690 ltexprlemfl 7704 ltexprlemfu 7706 addasssrg 7851 axaddass 7967 apmul1 8843 ltmul2 8911 lemul2 8912 dvdscmulr 12050 dvdsmulcr 12051 modremain 12159 ndvdsadd 12161 rpexp12i 12396 xblcntrps 14803 xblcntr 14804 |
| Copyright terms: Public domain | W3C validator |