ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3adant3r GIF version

Theorem 3adant3r 1237
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
Hypothesis
Ref Expression
3adant1l.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3adant3r ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)

Proof of Theorem 3adant3r
StepHypRef Expression
1 3adant1l.1 . . . 4 ((𝜑𝜓𝜒) → 𝜃)
213com13 1210 . . 3 ((𝜒𝜓𝜑) → 𝜃)
323adant1r 1233 . 2 (((𝜒𝜏) ∧ 𝜓𝜑) → 𝜃)
433com13 1210 1 ((𝜑𝜓 ∧ (𝜒𝜏)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  addassnqg  7449  mulassnqg  7451  prarloc  7570  ltpopr  7662  ltexprlemfl  7676  ltexprlemfu  7678  addasssrg  7823  axaddass  7939  apmul1  8815  ltmul2  8883  lemul2  8884  dvdscmulr  11985  dvdsmulcr  11986  modremain  12094  ndvdsadd  12096  rpexp12i  12323  xblcntrps  14649  xblcntr  14650
  Copyright terms: Public domain W3C validator