| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3adant3r | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.) |
| Ref | Expression |
|---|---|
| 3adant1l.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3adant3r | ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3adant1l.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3com13 1232 | . . 3 ⊢ ((𝜒 ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 3 | 2 | 3adant1r 1255 | . 2 ⊢ (((𝜒 ∧ 𝜏) ∧ 𝜓 ∧ 𝜑) → 𝜃) |
| 4 | 3 | 3com13 1232 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ (𝜒 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: addassnqg 7565 mulassnqg 7567 prarloc 7686 ltpopr 7778 ltexprlemfl 7792 ltexprlemfu 7794 addasssrg 7939 axaddass 8055 apmul1 8931 ltmul2 8999 lemul2 9000 dvdscmulr 12326 dvdsmulcr 12327 modremain 12435 ndvdsadd 12437 rpexp12i 12672 xblcntrps 15081 xblcntr 15082 |
| Copyright terms: Public domain | W3C validator |