ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d GIF version

Theorem 3eltr4d 2273
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1 (𝜑𝐴𝐵)
3eltr4d.2 (𝜑𝐶 = 𝐴)
3eltr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3eltr4d (𝜑𝐶𝐷)

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2 (𝜑𝐶 = 𝐴)
2 3eltr4d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3eleqtrrd 2269 . 2 (𝜑𝐴𝐷)
51, 4eqeltrd 2266 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-cleq 2182  df-clel 2185
This theorem is referenced by:  ovmpodxf  6023  nnaordi  6534  iccf1o  10036  nnmindc  12070  ennnfonelemrn  12473  ctiunctlemfo  12493  sgrppropd  12891  mndpropd  12916  issubmnd  12918  imasgrp  13068  mulgnndir  13108  subg0cl  13138  subginvcl  13139  subgcl  13140  rngcl  13315  rngpropd  13326  srgcl  13341  srgidcl  13347  ringidcl  13391  ringpropd  13409  dvdsrd  13461  dvrvald  13501  subrngmcl  13573  subrgmcl  13597  subrgunit  13603  lmodprop2d  13681  lidl0  13822  lidl1  13823  psraddcl  13973
  Copyright terms: Public domain W3C validator