![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eltr4d | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eltr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eltr4d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3eltr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | eleqtrrd 2269 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrd 2266 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 df-clel 2185 |
This theorem is referenced by: ovmpodxf 6023 nnaordi 6534 iccf1o 10036 nnmindc 12070 ennnfonelemrn 12473 ctiunctlemfo 12493 sgrppropd 12891 mndpropd 12916 issubmnd 12918 imasgrp 13068 mulgnndir 13108 subg0cl 13138 subginvcl 13139 subgcl 13140 rngcl 13315 rngpropd 13326 srgcl 13341 srgidcl 13347 ringidcl 13391 ringpropd 13409 dvdsrd 13461 dvrvald 13501 subrngmcl 13573 subrgmcl 13597 subrgunit 13603 lmodprop2d 13681 lidl0 13822 lidl1 13823 psraddcl 13973 |
Copyright terms: Public domain | W3C validator |