![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3eltr4d | GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
3eltr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3eltr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3eltr4d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
2 | 3eltr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
3 | 3eltr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | eleqtrrd 2273 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
5 | 1, 4 | eqeltrd 2270 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: ovmpodxf 6045 nnaordi 6563 iccf1o 10073 nnmindc 12174 ennnfonelemrn 12579 ctiunctlemfo 12599 sgrppropd 12999 mndpropd 13024 issubmnd 13026 imasgrp 13184 mulgnndir 13224 subg0cl 13255 subginvcl 13256 subgcl 13257 rngcl 13443 rngpropd 13454 srgcl 13469 srgidcl 13475 ringidcl 13519 ringpropd 13537 dvdsrd 13593 dvrvald 13633 subrngmcl 13708 subrgmcl 13732 subrgunit 13738 lmodprop2d 13847 lidl0 13988 lidl1 13989 psraddcl 14175 |
Copyright terms: Public domain | W3C validator |