ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d GIF version

Theorem 3eltr4d 2289
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1 (𝜑𝐴𝐵)
3eltr4d.2 (𝜑𝐶 = 𝐴)
3eltr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3eltr4d (𝜑𝐶𝐷)

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2 (𝜑𝐶 = 𝐴)
2 3eltr4d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3eleqtrrd 2285 . 2 (𝜑𝐴𝐷)
51, 4eqeltrd 2282 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-cleq 2198  df-clel 2201
This theorem is referenced by:  ovmpodxf  6071  nnaordi  6594  iccf1o  10126  nnmindc  12355  ennnfonelemrn  12790  ctiunctlemfo  12810  sgrppropd  13245  mndpropd  13272  issubmnd  13274  imasgrp  13447  mulgnndir  13487  subg0cl  13518  subginvcl  13519  subgcl  13520  rngcl  13706  rngpropd  13717  srgcl  13732  srgidcl  13738  ringidcl  13782  ringpropd  13800  dvdsrd  13856  dvrvald  13896  subrngmcl  13971  subrgmcl  13995  subrgunit  14001  lmodprop2d  14110  lidl0  14251  lidl1  14252  psraddcl  14442
  Copyright terms: Public domain W3C validator