ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d GIF version

Theorem 3eltr4d 2261
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1 (𝜑𝐴𝐵)
3eltr4d.2 (𝜑𝐶 = 𝐴)
3eltr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3eltr4d (𝜑𝐶𝐷)

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2 (𝜑𝐶 = 𝐴)
2 3eltr4d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3eleqtrrd 2257 . 2 (𝜑𝐴𝐷)
51, 4eqeltrd 2254 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173
This theorem is referenced by:  ovmpodxf  6002  nnaordi  6511  iccf1o  10006  nnmindc  12037  ennnfonelemrn  12422  ctiunctlemfo  12442  mndpropd  12846  issubmnd  12848  mulgnndir  13017  subg0cl  13047  subginvcl  13048  subgcl  13049  srgcl  13158  srgidcl  13164  ringidcl  13208  ringpropd  13222  dvdsrd  13268  dvrvald  13308  subrgmcl  13359  subrgunit  13365  lmodprop2d  13443
  Copyright terms: Public domain W3C validator