ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d GIF version

Theorem 3eltr4d 2277
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1 (𝜑𝐴𝐵)
3eltr4d.2 (𝜑𝐶 = 𝐴)
3eltr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3eltr4d (𝜑𝐶𝐷)

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2 (𝜑𝐶 = 𝐴)
2 3eltr4d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3eleqtrrd 2273 . 2 (𝜑𝐴𝐷)
51, 4eqeltrd 2270 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  ovmpodxf  6045  nnaordi  6563  iccf1o  10073  nnmindc  12174  ennnfonelemrn  12579  ctiunctlemfo  12599  sgrppropd  12999  mndpropd  13024  issubmnd  13026  imasgrp  13184  mulgnndir  13224  subg0cl  13255  subginvcl  13256  subgcl  13257  rngcl  13443  rngpropd  13454  srgcl  13469  srgidcl  13475  ringidcl  13519  ringpropd  13537  dvdsrd  13593  dvrvald  13633  subrngmcl  13708  subrgmcl  13732  subrgunit  13738  lmodprop2d  13847  lidl0  13988  lidl1  13989  psraddcl  14175
  Copyright terms: Public domain W3C validator