ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d GIF version

Theorem 3eltr4d 2288
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1 (𝜑𝐴𝐵)
3eltr4d.2 (𝜑𝐶 = 𝐴)
3eltr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3eltr4d (𝜑𝐶𝐷)

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2 (𝜑𝐶 = 𝐴)
2 3eltr4d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3eleqtrrd 2284 . 2 (𝜑𝐴𝐷)
51, 4eqeltrd 2281 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200
This theorem is referenced by:  ovmpodxf  6070  nnaordi  6593  iccf1o  10125  nnmindc  12326  ennnfonelemrn  12761  ctiunctlemfo  12781  sgrppropd  13216  mndpropd  13243  issubmnd  13245  imasgrp  13418  mulgnndir  13458  subg0cl  13489  subginvcl  13490  subgcl  13491  rngcl  13677  rngpropd  13688  srgcl  13703  srgidcl  13709  ringidcl  13753  ringpropd  13771  dvdsrd  13827  dvrvald  13867  subrngmcl  13942  subrgmcl  13966  subrgunit  13972  lmodprop2d  14081  lidl0  14222  lidl1  14223  psraddcl  14413
  Copyright terms: Public domain W3C validator