ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d GIF version

Theorem 3eltr4d 2313
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1 (𝜑𝐴𝐵)
3eltr4d.2 (𝜑𝐶 = 𝐴)
3eltr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3eltr4d (𝜑𝐶𝐷)

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2 (𝜑𝐶 = 𝐴)
2 3eltr4d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3eleqtrrd 2309 . 2 (𝜑𝐴𝐷)
51, 4eqeltrd 2306 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-clel 2225
This theorem is referenced by:  ovmpodxf  6129  nnaordi  6652  iccf1o  10196  nnmindc  12550  ennnfonelemrn  12985  ctiunctlemfo  13005  sgrppropd  13441  mndpropd  13468  issubmnd  13470  imasgrp  13643  mulgnndir  13683  subg0cl  13714  subginvcl  13715  subgcl  13716  rngcl  13902  rngpropd  13913  srgcl  13928  srgidcl  13934  ringidcl  13978  ringpropd  13996  dvdsrd  14052  dvrvald  14092  subrngmcl  14167  subrgmcl  14191  subrgunit  14197  lmodprop2d  14306  lidl0  14447  lidl1  14448  psraddcl  14638
  Copyright terms: Public domain W3C validator