| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eltr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eltr4d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eltr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | eleqtrrd 2284 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrd 2281 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: ovmpodxf 6070 nnaordi 6593 iccf1o 10125 nnmindc 12326 ennnfonelemrn 12761 ctiunctlemfo 12781 sgrppropd 13216 mndpropd 13243 issubmnd 13245 imasgrp 13418 mulgnndir 13458 subg0cl 13489 subginvcl 13490 subgcl 13491 rngcl 13677 rngpropd 13688 srgcl 13703 srgidcl 13709 ringidcl 13753 ringpropd 13771 dvdsrd 13827 dvrvald 13867 subrngmcl 13942 subrgmcl 13966 subrgunit 13972 lmodprop2d 14081 lidl0 14222 lidl1 14223 psraddcl 14413 |
| Copyright terms: Public domain | W3C validator |