| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eltr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eltr4d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eltr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | eleqtrrd 2276 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrd 2273 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: ovmpodxf 6052 nnaordi 6575 iccf1o 10096 nnmindc 12226 ennnfonelemrn 12661 ctiunctlemfo 12681 sgrppropd 13115 mndpropd 13142 issubmnd 13144 imasgrp 13317 mulgnndir 13357 subg0cl 13388 subginvcl 13389 subgcl 13390 rngcl 13576 rngpropd 13587 srgcl 13602 srgidcl 13608 ringidcl 13652 ringpropd 13670 dvdsrd 13726 dvrvald 13766 subrngmcl 13841 subrgmcl 13865 subrgunit 13871 lmodprop2d 13980 lidl0 14121 lidl1 14122 psraddcl 14308 |
| Copyright terms: Public domain | W3C validator |