ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4d GIF version

Theorem 3eltr4d 2280
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4d.1 (𝜑𝐴𝐵)
3eltr4d.2 (𝜑𝐶 = 𝐴)
3eltr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3eltr4d (𝜑𝐶𝐷)

Proof of Theorem 3eltr4d
StepHypRef Expression
1 3eltr4d.2 . 2 (𝜑𝐶 = 𝐴)
2 3eltr4d.1 . . 3 (𝜑𝐴𝐵)
3 3eltr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3eleqtrrd 2276 . 2 (𝜑𝐴𝐷)
51, 4eqeltrd 2273 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  ovmpodxf  6052  nnaordi  6575  iccf1o  10098  nnmindc  12228  ennnfonelemrn  12663  ctiunctlemfo  12683  sgrppropd  13117  mndpropd  13144  issubmnd  13146  imasgrp  13319  mulgnndir  13359  subg0cl  13390  subginvcl  13391  subgcl  13392  rngcl  13578  rngpropd  13589  srgcl  13604  srgidcl  13610  ringidcl  13654  ringpropd  13672  dvdsrd  13728  dvrvald  13768  subrngmcl  13843  subrgmcl  13867  subrgunit  13873  lmodprop2d  13982  lidl0  14123  lidl1  14124  psraddcl  14314
  Copyright terms: Public domain W3C validator