| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eltr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eltr4d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eltr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | eleqtrrd 2276 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrd 2273 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: ovmpodxf 6052 nnaordi 6575 iccf1o 10098 nnmindc 12228 ennnfonelemrn 12663 ctiunctlemfo 12683 sgrppropd 13117 mndpropd 13144 issubmnd 13146 imasgrp 13319 mulgnndir 13359 subg0cl 13390 subginvcl 13391 subgcl 13392 rngcl 13578 rngpropd 13589 srgcl 13604 srgidcl 13610 ringidcl 13654 ringpropd 13672 dvdsrd 13728 dvrvald 13768 subrngmcl 13843 subrgmcl 13867 subrgunit 13873 lmodprop2d 13982 lidl0 14123 lidl1 14124 psraddcl 14314 |
| Copyright terms: Public domain | W3C validator |