| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eltr4d | GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4d.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 3eltr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3eltr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3eltr4d | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 2 | 3eltr4d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 3 | 3eltr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | eleqtrrd 2309 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| 5 | 1, 4 | eqeltrd 2306 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: ovmpodxf 6129 nnaordi 6652 iccf1o 10196 nnmindc 12550 ennnfonelemrn 12985 ctiunctlemfo 13005 sgrppropd 13441 mndpropd 13468 issubmnd 13470 imasgrp 13643 mulgnndir 13683 subg0cl 13714 subginvcl 13715 subgcl 13716 rngcl 13902 rngpropd 13913 srgcl 13928 srgidcl 13934 ringidcl 13978 ringpropd 13996 dvdsrd 14052 dvrvald 14092 subrngmcl 14167 subrgmcl 14191 subrgunit 14197 lmodprop2d 14306 lidl0 14447 lidl1 14448 psraddcl 14638 |
| Copyright terms: Public domain | W3C validator |