Proof of Theorem lincmb01cmp
Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ (0[,]1)) |
2 | | 0re 7899 |
. . . . . . 7
⊢ 0 ∈
ℝ |
3 | 2 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 0 ∈
ℝ) |
4 | | 1re 7898 |
. . . . . . 7
⊢ 1 ∈
ℝ |
5 | 4 | a1i 9 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈
ℝ) |
6 | 2, 4 | elicc2i 9875 |
. . . . . . . 8
⊢ (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤
𝑇 ∧ 𝑇 ≤ 1)) |
7 | 6 | simp1bi 1002 |
. . . . . . 7
⊢ (𝑇 ∈ (0[,]1) → 𝑇 ∈
ℝ) |
8 | 7 | adantl 275 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℝ) |
9 | | difrp 9628 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈
ℝ+)) |
10 | 9 | biimp3a 1335 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵 − 𝐴) ∈
ℝ+) |
11 | 10 | adantr 274 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵 − 𝐴) ∈
ℝ+) |
12 | | eqid 2165 |
. . . . . . 7
⊢ (0
· (𝐵 − 𝐴)) = (0 · (𝐵 − 𝐴)) |
13 | | eqid 2165 |
. . . . . . 7
⊢ (1
· (𝐵 − 𝐴)) = (1 · (𝐵 − 𝐴)) |
14 | 12, 13 | iccdil 9934 |
. . . . . 6
⊢ (((0
∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ (𝐵 − 𝐴) ∈ ℝ+)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵 − 𝐴)) ∈ ((0 · (𝐵 − 𝐴))[,](1 · (𝐵 − 𝐴))))) |
15 | 3, 5, 8, 11, 14 | syl22anc 1229 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵 − 𝐴)) ∈ ((0 · (𝐵 − 𝐴))[,](1 · (𝐵 − 𝐴))))) |
16 | 1, 15 | mpbid 146 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵 − 𝐴)) ∈ ((0 · (𝐵 − 𝐴))[,](1 · (𝐵 − 𝐴)))) |
17 | | simpl2 991 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℝ) |
18 | | simpl1 990 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℝ) |
19 | 17, 18 | resubcld 8279 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵 − 𝐴) ∈ ℝ) |
20 | 19 | recnd 7927 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵 − 𝐴) ∈ ℂ) |
21 | 20 | mul02d 8290 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 · (𝐵 − 𝐴)) = 0) |
22 | 20 | mulid2d 7917 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · (𝐵 − 𝐴)) = (𝐵 − 𝐴)) |
23 | 21, 22 | oveq12d 5860 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 · (𝐵 − 𝐴))[,](1 · (𝐵 − 𝐴))) = (0[,](𝐵 − 𝐴))) |
24 | 16, 23 | eleqtrd 2245 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵 − 𝐴)) ∈ (0[,](𝐵 − 𝐴))) |
25 | 8, 19 | remulcld 7929 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵 − 𝐴)) ∈ ℝ) |
26 | | eqid 2165 |
. . . . 5
⊢ (0 +
𝐴) = (0 + 𝐴) |
27 | | eqid 2165 |
. . . . 5
⊢ ((𝐵 − 𝐴) + 𝐴) = ((𝐵 − 𝐴) + 𝐴) |
28 | 26, 27 | iccshftr 9930 |
. . . 4
⊢ (((0
∈ ℝ ∧ (𝐵
− 𝐴) ∈ ℝ)
∧ ((𝑇 · (𝐵 − 𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝑇 · (𝐵 − 𝐴)) ∈ (0[,](𝐵 − 𝐴)) ↔ ((𝑇 · (𝐵 − 𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵 − 𝐴) + 𝐴)))) |
29 | 3, 19, 25, 18, 28 | syl22anc 1229 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵 − 𝐴)) ∈ (0[,](𝐵 − 𝐴)) ↔ ((𝑇 · (𝐵 − 𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵 − 𝐴) + 𝐴)))) |
30 | 24, 29 | mpbid 146 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵 − 𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵 − 𝐴) + 𝐴))) |
31 | 8 | recnd 7927 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℂ) |
32 | 17 | recnd 7927 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℂ) |
33 | 31, 32 | mulcld 7919 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐵) ∈ ℂ) |
34 | 18 | recnd 7927 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℂ) |
35 | 31, 34 | mulcld 7919 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐴) ∈ ℂ) |
36 | 33, 35, 34 | subadd23d 8231 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴)))) |
37 | 31, 32, 34 | subdid 8312 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵 − 𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴))) |
38 | 37 | oveq1d 5857 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵 − 𝐴)) + 𝐴) = (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴)) |
39 | | resubcl 8162 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 𝑇
∈ ℝ) → (1 − 𝑇) ∈ ℝ) |
40 | 4, 8, 39 | sylancr 411 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 − 𝑇) ∈
ℝ) |
41 | 40, 18 | remulcld 7929 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℝ) |
42 | 41 | recnd 7927 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℂ) |
43 | 42, 33 | addcomd 8049 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴))) |
44 | | 1cnd 7915 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈
ℂ) |
45 | 44, 31, 34 | subdird 8313 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴))) |
46 | 34 | mulid2d 7917 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴) |
47 | 46 | oveq1d 5857 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴))) |
48 | 45, 47 | eqtrd 2198 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴))) |
49 | 48 | oveq2d 5858 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴)))) |
50 | 43, 49 | eqtrd 2198 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴)))) |
51 | 36, 38, 50 | 3eqtr4d 2208 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵 − 𝐴)) + 𝐴) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵))) |
52 | 34 | addid2d 8048 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 + 𝐴) = 𝐴) |
53 | 32, 34 | npcand 8213 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝐵 − 𝐴) + 𝐴) = 𝐵) |
54 | 52, 53 | oveq12d 5860 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 + 𝐴)[,]((𝐵 − 𝐴) + 𝐴)) = (𝐴[,]𝐵)) |
55 | 30, 51, 54 | 3eltr3d 2249 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵)) |