ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lincmb01cmp GIF version

Theorem lincmb01cmp 10072
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ (0[,]1))
2 0re 8021 . . . . . . 7 0 ∈ ℝ
32a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 0 ∈ ℝ)
4 1re 8020 . . . . . . 7 1 ∈ ℝ
54a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℝ)
62, 4elicc2i 10008 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
76simp1bi 1014 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
87adantl 277 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℝ)
9 difrp 9761 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
109biimp3a 1356 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
1110adantr 276 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ+)
12 eqid 2193 . . . . . . 7 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
13 eqid 2193 . . . . . . 7 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
1412, 13iccdil 10067 . . . . . 6 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
153, 5, 8, 11, 14syl22anc 1250 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
161, 15mpbid 147 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
17 simpl2 1003 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
18 simpl1 1002 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1917, 18resubcld 8402 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
2019recnd 8050 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℂ)
2120mul02d 8413 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 · (𝐵𝐴)) = 0)
2220mulid2d 8040 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
2321, 22oveq12d 5937 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = (0[,](𝐵𝐴)))
2416, 23eleqtrd 2272 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)))
258, 19remulcld 8052 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ℝ)
26 eqid 2193 . . . . 5 (0 + 𝐴) = (0 + 𝐴)
27 eqid 2193 . . . . 5 ((𝐵𝐴) + 𝐴) = ((𝐵𝐴) + 𝐴)
2826, 27iccshftr 10063 . . . 4 (((0 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) ∧ ((𝑇 · (𝐵𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
293, 19, 25, 18, 28syl22anc 1250 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
3024, 29mpbid 147 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)))
318recnd 8050 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℂ)
3217recnd 8050 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
3331, 32mulcld 8042 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐵) ∈ ℂ)
3418recnd 8050 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
3531, 34mulcld 8042 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐴) ∈ ℂ)
3633, 35, 34subadd23d 8354 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
3731, 32, 34subdid 8435 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
3837oveq1d 5934 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴))
39 resubcl 8285 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
404, 8, 39sylancr 414 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 − 𝑇) ∈ ℝ)
4140, 18remulcld 8052 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℝ)
4241recnd 8050 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℂ)
4342, 33addcomd 8172 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)))
44 1cnd 8037 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℂ)
4544, 31, 34subdird 8436 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
4634mulid2d 8040 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
4746oveq1d 5934 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
4845, 47eqtrd 2226 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
4948oveq2d 5935 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
5043, 49eqtrd 2226 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
5136, 38, 503eqtr4d 2236 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
5234addlidd 8171 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 + 𝐴) = 𝐴)
5332, 34npcand 8336 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝐵𝐴) + 𝐴) = 𝐵)
5452, 53oveq12d 5937 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)) = (𝐴[,]𝐵))
5530, 51, 543eltr3d 2276 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wcel 2164   class class class wbr 4030  (class class class)co 5919  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192  +crp 9722  [,]cicc 9960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990  ax-pre-mulgt0 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-rp 9723  df-icc 9964
This theorem is referenced by:  iccf1o  10073
  Copyright terms: Public domain W3C validator