ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lincmb01cmp GIF version

Theorem lincmb01cmp 9793
Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
lincmb01cmp (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))

Proof of Theorem lincmb01cmp
StepHypRef Expression
1 simpr 109 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ (0[,]1))
2 0re 7773 . . . . . . 7 0 ∈ ℝ
32a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 0 ∈ ℝ)
4 1re 7772 . . . . . . 7 1 ∈ ℝ
54a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℝ)
62, 4elicc2i 9729 . . . . . . . 8 (𝑇 ∈ (0[,]1) ↔ (𝑇 ∈ ℝ ∧ 0 ≤ 𝑇𝑇 ≤ 1))
76simp1bi 996 . . . . . . 7 (𝑇 ∈ (0[,]1) → 𝑇 ∈ ℝ)
87adantl 275 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℝ)
9 difrp 9487 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
109biimp3a 1323 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
1110adantr 274 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ+)
12 eqid 2139 . . . . . . 7 (0 · (𝐵𝐴)) = (0 · (𝐵𝐴))
13 eqid 2139 . . . . . . 7 (1 · (𝐵𝐴)) = (1 · (𝐵𝐴))
1412, 13iccdil 9788 . . . . . 6 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ+)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
153, 5, 8, 11, 14syl22anc 1217 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 ∈ (0[,]1) ↔ (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴)))))
161, 15mpbid 146 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))))
17 simpl2 985 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℝ)
18 simpl1 984 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℝ)
1917, 18resubcld 8150 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℝ)
2019recnd 7801 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝐵𝐴) ∈ ℂ)
2120mul02d 8161 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 · (𝐵𝐴)) = 0)
2220mulid2d 7791 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · (𝐵𝐴)) = (𝐵𝐴))
2321, 22oveq12d 5792 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 · (𝐵𝐴))[,](1 · (𝐵𝐴))) = (0[,](𝐵𝐴)))
2416, 23eleqtrd 2218 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)))
258, 19remulcld 7803 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) ∈ ℝ)
26 eqid 2139 . . . . 5 (0 + 𝐴) = (0 + 𝐴)
27 eqid 2139 . . . . 5 ((𝐵𝐴) + 𝐴) = ((𝐵𝐴) + 𝐴)
2826, 27iccshftr 9784 . . . 4 (((0 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) ∧ ((𝑇 · (𝐵𝐴)) ∈ ℝ ∧ 𝐴 ∈ ℝ)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
293, 19, 25, 18, 28syl22anc 1217 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) ∈ (0[,](𝐵𝐴)) ↔ ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴))))
3024, 29mpbid 146 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) ∈ ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)))
318recnd 7801 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝑇 ∈ ℂ)
3217recnd 7801 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐵 ∈ ℂ)
3331, 32mulcld 7793 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐵) ∈ ℂ)
3418recnd 7801 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
3531, 34mulcld 7793 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · 𝐴) ∈ ℂ)
3633, 35, 34subadd23d 8102 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
3731, 32, 34subdid 8183 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (𝑇 · (𝐵𝐴)) = ((𝑇 · 𝐵) − (𝑇 · 𝐴)))
3837oveq1d 5789 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((𝑇 · 𝐵) − (𝑇 · 𝐴)) + 𝐴))
39 resubcl 8033 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
404, 8, 39sylancr 410 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 − 𝑇) ∈ ℝ)
4140, 18remulcld 7803 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℝ)
4241recnd 7801 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) ∈ ℂ)
4342, 33addcomd 7920 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)))
44 1cnd 7789 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → 1 ∈ ℂ)
4544, 31, 34subdird 8184 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = ((1 · 𝐴) − (𝑇 · 𝐴)))
4634mulid2d 7791 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (1 · 𝐴) = 𝐴)
4746oveq1d 5789 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 · 𝐴) − (𝑇 · 𝐴)) = (𝐴 − (𝑇 · 𝐴)))
4845, 47eqtrd 2172 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((1 − 𝑇) · 𝐴) = (𝐴 − (𝑇 · 𝐴)))
4948oveq2d 5790 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · 𝐵) + ((1 − 𝑇) · 𝐴)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
5043, 49eqtrd 2172 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) = ((𝑇 · 𝐵) + (𝐴 − (𝑇 · 𝐴))))
5136, 38, 503eqtr4d 2182 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝑇 · (𝐵𝐴)) + 𝐴) = (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)))
5234addid2d 7919 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (0 + 𝐴) = 𝐴)
5332, 34npcand 8084 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((𝐵𝐴) + 𝐴) = 𝐵)
5452, 53oveq12d 5792 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → ((0 + 𝐴)[,]((𝐵𝐴) + 𝐴)) = (𝐴[,]𝐵))
5530, 51, 543eltr3d 2222 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝐴) + (𝑇 · 𝐵)) ∈ (𝐴[,]𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7626  0cc0 7627  1c1 7628   + caddc 7630   · cmul 7632   < clt 7807  cle 7808  cmin 7940  +crp 9448  [,]cicc 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-ltadd 7743  ax-pre-mulgt0 7744
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-rp 9449  df-icc 9685
This theorem is referenced by:  iccf1o  9794
  Copyright terms: Public domain W3C validator