ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi GIF version

Theorem nnaordi 6412
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem nnaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
2 oveq2 5790 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
31, 2eleq12d 2211 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
43imbi2d 229 . . . . . . 7 (𝑥 = 𝐶 → (((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥)) ↔ ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))))
5 oveq2 5790 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
6 oveq2 5790 . . . . . . . . 9 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
75, 6eleq12d 2211 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ∈ (𝐵 +o ∅)))
8 oveq2 5790 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
9 oveq2 5790 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
108, 9eleq12d 2211 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦)))
11 oveq2 5790 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
12 oveq2 5790 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12eleq12d 2211 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
14 simpr 109 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
15 elnn 4527 . . . . . . . . . . 11 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
1615ancoms 266 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
17 nna0 6378 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1816, 17syl 14 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
19 nna0 6378 . . . . . . . . . 10 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
2019adantr 274 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐵 +o ∅) = 𝐵)
2114, 18, 203eltr4d 2224 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) ∈ (𝐵 +o ∅))
22 simprl 521 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
23 simpl 108 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ ω)
24 nnacl 6384 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
2522, 23, 24syl2anc 409 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o 𝑦) ∈ ω)
26 nnsucelsuc 6395 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ ω → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
2725, 26syl 14 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
2816adantl 275 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
29 nnon 4531 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → 𝐴 ∈ On)
3028, 29syl 14 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ On)
31 nnon 4531 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → 𝑦 ∈ On)
3231adantr 274 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ On)
33 oasuc 6368 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
3430, 32, 33syl2anc 409 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
35 nnon 4531 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → 𝐵 ∈ On)
3635ad2antrl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ On)
37 oasuc 6368 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3836, 32, 37syl2anc 409 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3934, 38eleq12d 2211 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
4027, 39bitr4d 190 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
4140biimpd 143 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
4241ex 114 . . . . . . . 8 (𝑦 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦))))
437, 10, 13, 21, 42finds2 4523 . . . . . . 7 (𝑥 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥)))
444, 43vtoclga 2755 . . . . . 6 (𝐶 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
4544imp 123 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))
4616adantl 275 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
47 simpl 108 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐶 ∈ ω)
48 nnacom 6388 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 +o 𝐶) = (𝐶 +o 𝐴))
4946, 47, 48syl2anc 409 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o 𝐶) = (𝐶 +o 𝐴))
50 nnacom 6388 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5150ancoms 266 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5251adantrr 471 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5345, 49, 523eltr3d 2223 . . . 4 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
54533impb 1178 . . 3 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
55543com12 1186 . 2 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
56553expia 1184 1 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  c0 3368  Oncon0 4293  suc csuc 4295  ωcom 4512  (class class class)co 5782   +o coa 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325
This theorem is referenced by:  nnaord  6413  nnmordi  6420  addclpi  7159  addnidpig  7168  archnqq  7249  prarloclemarch2  7251  prarloclemlt  7325
  Copyright terms: Public domain W3C validator