ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi GIF version

Theorem nnaordi 6404
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem nnaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
2 oveq2 5782 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
31, 2eleq12d 2210 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
43imbi2d 229 . . . . . . 7 (𝑥 = 𝐶 → (((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥)) ↔ ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))))
5 oveq2 5782 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
6 oveq2 5782 . . . . . . . . 9 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
75, 6eleq12d 2210 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ∈ (𝐵 +o ∅)))
8 oveq2 5782 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
9 oveq2 5782 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
108, 9eleq12d 2210 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦)))
11 oveq2 5782 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
12 oveq2 5782 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12eleq12d 2210 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
14 simpr 109 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
15 elnn 4519 . . . . . . . . . . 11 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
1615ancoms 266 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
17 nna0 6370 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1816, 17syl 14 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
19 nna0 6370 . . . . . . . . . 10 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
2019adantr 274 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐵 +o ∅) = 𝐵)
2114, 18, 203eltr4d 2223 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) ∈ (𝐵 +o ∅))
22 simprl 520 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
23 simpl 108 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ ω)
24 nnacl 6376 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
2522, 23, 24syl2anc 408 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o 𝑦) ∈ ω)
26 nnsucelsuc 6387 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ ω → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
2725, 26syl 14 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
2816adantl 275 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
29 nnon 4523 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → 𝐴 ∈ On)
3028, 29syl 14 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ On)
31 nnon 4523 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → 𝑦 ∈ On)
3231adantr 274 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ On)
33 oasuc 6360 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
3430, 32, 33syl2anc 408 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
35 nnon 4523 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → 𝐵 ∈ On)
3635ad2antrl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ On)
37 oasuc 6360 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3836, 32, 37syl2anc 408 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3934, 38eleq12d 2210 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
4027, 39bitr4d 190 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
4140biimpd 143 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
4241ex 114 . . . . . . . 8 (𝑦 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦))))
437, 10, 13, 21, 42finds2 4515 . . . . . . 7 (𝑥 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥)))
444, 43vtoclga 2752 . . . . . 6 (𝐶 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
4544imp 123 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))
4616adantl 275 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
47 simpl 108 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐶 ∈ ω)
48 nnacom 6380 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 +o 𝐶) = (𝐶 +o 𝐴))
4946, 47, 48syl2anc 408 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o 𝐶) = (𝐶 +o 𝐴))
50 nnacom 6380 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5150ancoms 266 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5251adantrr 470 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5345, 49, 523eltr3d 2222 . . . 4 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
54533impb 1177 . . 3 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
55543com12 1185 . 2 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
56553expia 1183 1 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  c0 3363  Oncon0 4285  suc csuc 4287  ωcom 4504  (class class class)co 5774   +o coa 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-oadd 6317
This theorem is referenced by:  nnaord  6405  nnmordi  6412  addclpi  7135  addnidpig  7144  archnqq  7225  prarloclemarch2  7227  prarloclemlt  7301
  Copyright terms: Public domain W3C validator