ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnaordi GIF version

Theorem nnaordi 6594
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers. (Contributed by NM, 3-Feb-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordi ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))

Proof of Theorem nnaordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5952 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
2 oveq2 5952 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
31, 2eleq12d 2276 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
43imbi2d 230 . . . . . . 7 (𝑥 = 𝐶 → (((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥)) ↔ ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))))
5 oveq2 5952 . . . . . . . . 9 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
6 oveq2 5952 . . . . . . . . 9 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
75, 6eleq12d 2276 . . . . . . . 8 (𝑥 = ∅ → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ∈ (𝐵 +o ∅)))
8 oveq2 5952 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
9 oveq2 5952 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
108, 9eleq12d 2276 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦)))
11 oveq2 5952 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
12 oveq2 5952 . . . . . . . . 9 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12eleq12d 2276 . . . . . . . 8 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
14 simpr 110 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴𝐵)
15 elnn 4654 . . . . . . . . . . 11 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
1615ancoms 268 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ∈ ω)
17 nna0 6560 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1816, 17syl 14 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) = 𝐴)
19 nna0 6560 . . . . . . . . . 10 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
2019adantr 276 . . . . . . . . 9 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐵 +o ∅) = 𝐵)
2114, 18, 203eltr4d 2289 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o ∅) ∈ (𝐵 +o ∅))
22 simprl 529 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ ω)
23 simpl 109 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ ω)
24 nnacl 6566 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o 𝑦) ∈ ω)
2522, 23, 24syl2anc 411 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o 𝑦) ∈ ω)
26 nnsucelsuc 6577 . . . . . . . . . . . 12 ((𝐵 +o 𝑦) ∈ ω → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
2725, 26syl 14 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
2816adantl 277 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
29 nnon 4658 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → 𝐴 ∈ On)
3028, 29syl 14 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ On)
31 nnon 4658 . . . . . . . . . . . . . 14 (𝑦 ∈ ω → 𝑦 ∈ On)
3231adantr 276 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝑦 ∈ On)
33 oasuc 6550 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
3430, 32, 33syl2anc 411 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
35 nnon 4658 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → 𝐵 ∈ On)
3635ad2antrl 490 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐵 ∈ On)
37 oasuc 6550 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3836, 32, 37syl2anc 411 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3934, 38eleq12d 2276 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ∈ suc (𝐵 +o 𝑦)))
4027, 39bitr4d 191 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) ↔ (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
4140biimpd 144 . . . . . . . . 9 ((𝑦 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦)))
4241ex 115 . . . . . . . 8 (𝑦 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → ((𝐴 +o 𝑦) ∈ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ∈ (𝐵 +o suc 𝑦))))
437, 10, 13, 21, 42finds2 4649 . . . . . . 7 (𝑥 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝑥) ∈ (𝐵 +o 𝑥)))
444, 43vtoclga 2839 . . . . . 6 (𝐶 ∈ ω → ((𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶)))
4544imp 124 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o 𝐶) ∈ (𝐵 +o 𝐶))
4616adantl 277 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐴 ∈ ω)
47 simpl 109 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → 𝐶 ∈ ω)
48 nnacom 6570 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 +o 𝐶) = (𝐶 +o 𝐴))
4946, 47, 48syl2anc 411 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐴 +o 𝐶) = (𝐶 +o 𝐴))
50 nnacom 6570 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5150ancoms 268 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5251adantrr 479 . . . . 5 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐵 +o 𝐶) = (𝐶 +o 𝐵))
5345, 49, 523eltr3d 2288 . . . 4 ((𝐶 ∈ ω ∧ (𝐵 ∈ ω ∧ 𝐴𝐵)) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
54533impb 1202 . . 3 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
55543com12 1210 . 2 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐴𝐵) → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵))
56553expia 1208 1 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +o 𝐴) ∈ (𝐶 +o 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  c0 3460  Oncon0 4410  suc csuc 4412  ωcom 4638  (class class class)co 5944   +o coa 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-oadd 6506
This theorem is referenced by:  nnaord  6595  nnmordi  6602  addclpi  7440  addnidpig  7449  archnqq  7530  prarloclemarch2  7532  prarloclemlt  7606
  Copyright terms: Public domain W3C validator