Proof of Theorem cnmpt2res
Step | Hyp | Ref
| Expression |
1 | | cnmpt2res.10 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿)) |
2 | | cnmpt1res.5 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
3 | | cnmpt2res.9 |
. . . . 5
⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
4 | | xpss12 4718 |
. . . . 5
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) |
5 | 2, 3, 4 | syl2anc 409 |
. . . 4
⊢ (𝜑 → (𝑌 × 𝑊) ⊆ (𝑋 × 𝑍)) |
6 | | cnmpt1res.3 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
7 | | cnmpt2res.8 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (TopOn‘𝑍)) |
8 | | txtopon 13056 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ (TopOn‘𝑍)) → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) |
9 | 6, 7, 8 | syl2anc 409 |
. . . . 5
⊢ (𝜑 → (𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍))) |
10 | | toponuni 12807 |
. . . . 5
⊢ ((𝐽 ×t 𝑀) ∈ (TopOn‘(𝑋 × 𝑍)) → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) |
11 | 9, 10 | syl 14 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑍) = ∪ (𝐽 ×t 𝑀)) |
12 | 5, 11 | sseqtrd 3185 |
. . 3
⊢ (𝜑 → (𝑌 × 𝑊) ⊆ ∪
(𝐽 ×t
𝑀)) |
13 | | eqid 2170 |
. . . 4
⊢ ∪ (𝐽
×t 𝑀) =
∪ (𝐽 ×t 𝑀) |
14 | 13 | cnrest 13029 |
. . 3
⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ∈ ((𝐽 ×t 𝑀) Cn 𝐿) ∧ (𝑌 × 𝑊) ⊆ ∪
(𝐽 ×t
𝑀)) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
15 | 1, 12, 14 | syl2anc 409 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) ∈ (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿)) |
16 | | resmpo 5951 |
. . 3
⊢ ((𝑌 ⊆ 𝑋 ∧ 𝑊 ⊆ 𝑍) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) |
17 | 2, 3, 16 | syl2anc 409 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑍 ↦ 𝐴) ↾ (𝑌 × 𝑊)) = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴)) |
18 | | topontop 12806 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
19 | 6, 18 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
20 | | topontop 12806 |
. . . . . 6
⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑀 ∈ Top) |
21 | 7, 20 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ Top) |
22 | | toponmax 12817 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
23 | 6, 22 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
24 | 23, 2 | ssexd 4129 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ V) |
25 | | toponmax 12817 |
. . . . . . 7
⊢ (𝑀 ∈ (TopOn‘𝑍) → 𝑍 ∈ 𝑀) |
26 | 7, 25 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ 𝑀) |
27 | 26, 3 | ssexd 4129 |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ V) |
28 | | txrest 13070 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑀 ∈ Top) ∧ (𝑌 ∈ V ∧ 𝑊 ∈ V)) → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) |
29 | 19, 21, 24, 27, 28 | syl22anc 1234 |
. . . 4
⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊))) |
30 | | cnmpt1res.2 |
. . . . 5
⊢ 𝐾 = (𝐽 ↾t 𝑌) |
31 | | cnmpt2res.7 |
. . . . 5
⊢ 𝑁 = (𝑀 ↾t 𝑊) |
32 | 30, 31 | oveq12i 5865 |
. . . 4
⊢ (𝐾 ×t 𝑁) = ((𝐽 ↾t 𝑌) ×t (𝑀 ↾t 𝑊)) |
33 | 29, 32 | eqtr4di 2221 |
. . 3
⊢ (𝜑 → ((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) = (𝐾 ×t 𝑁)) |
34 | 33 | oveq1d 5868 |
. 2
⊢ (𝜑 → (((𝐽 ×t 𝑀) ↾t (𝑌 × 𝑊)) Cn 𝐿) = ((𝐾 ×t 𝑁) Cn 𝐿)) |
35 | 15, 17, 34 | 3eltr3d 2253 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑊 ↦ 𝐴) ∈ ((𝐾 ×t 𝑁) Cn 𝐿)) |