ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  icoshftf1o GIF version

Theorem icoshftf1o 9927
Description: Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
icoshftf1o.1 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
Assertion
Ref Expression
icoshftf1o ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icoshftf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icoshft 9926 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,)𝐵) → (𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))))
21ralrimiv 2538 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
3 readdcl 7879 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
433adant2 1006 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℝ)
5 readdcl 7879 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
653adant1 1005 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
7 renegcl 8159 . . . . . . . . 9 (𝐶 ∈ ℝ → -𝐶 ∈ ℝ)
873ad2ant3 1010 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐶 ∈ ℝ)
9 icoshft 9926 . . . . . . . 8 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ ∧ -𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
104, 6, 8, 9syl3anc 1228 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶))))
1110imp 123 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) ∈ (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)))
126rexrd 7948 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ*)
13 icossre 9890 . . . . . . . . . 10 (((𝐴 + 𝐶) ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ*) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
144, 12, 13syl2anc 409 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ⊆ ℝ)
1514sselda 3142 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℝ)
1615recnd 7927 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝑦 ∈ ℂ)
17 simpl3 992 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℝ)
1817recnd 7927 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐶 ∈ ℂ)
1916, 18negsubd 8215 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦 + -𝐶) = (𝑦𝐶))
204recnd 7927 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + 𝐶) ∈ ℂ)
21 simp3 989 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
2221recnd 7927 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
2320, 22negsubd 8215 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = ((𝐴 + 𝐶) − 𝐶))
24 simp1 987 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
2524recnd 7927 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
2625, 22pncand 8210 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) − 𝐶) = 𝐴)
2723, 26eqtrd 2198 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐶) + -𝐶) = 𝐴)
286recnd 7927 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℂ)
2928, 22negsubd 8215 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = ((𝐵 + 𝐶) − 𝐶))
30 simp2 988 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
3130recnd 7927 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
3231, 22pncand 8210 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) − 𝐶) = 𝐵)
3329, 32eqtrd 2198 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐵 + 𝐶) + -𝐶) = 𝐵)
3427, 33oveq12d 5860 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3534adantr 274 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (((𝐴 + 𝐶) + -𝐶)[,)((𝐵 + 𝐶) + -𝐶)) = (𝐴[,)𝐵))
3611, 19, 353eltr3d 2249 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝑦𝐶) ∈ (𝐴[,)𝐵))
37 reueq 2925 . . . . 5 ((𝑦𝐶) ∈ (𝐴[,)𝐵) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3836, 37sylib 121 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶))
3915adantr 274 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℝ)
4039recnd 7927 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑦 ∈ ℂ)
41 simpll3 1028 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
4241recnd 7927 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℂ)
43 simpl1 990 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐴 ∈ ℝ)
44 simpl2 991 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ)
4544rexrd 7948 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → 𝐵 ∈ ℝ*)
46 icossre 9890 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
4743, 45, 46syl2anc 409 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (𝐴[,)𝐵) ⊆ ℝ)
4847sselda 3142 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
4948recnd 7927 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℂ)
5040, 42, 49subadd2d 8228 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → ((𝑦𝐶) = 𝑥 ↔ (𝑥 + 𝐶) = 𝑦))
51 eqcom 2167 . . . . . 6 (𝑥 = (𝑦𝐶) ↔ (𝑦𝐶) = 𝑥)
52 eqcom 2167 . . . . . 6 (𝑦 = (𝑥 + 𝐶) ↔ (𝑥 + 𝐶) = 𝑦)
5350, 51, 523bitr4g 222 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 = (𝑦𝐶) ↔ 𝑦 = (𝑥 + 𝐶)))
5453reubidva 2648 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → (∃!𝑥 ∈ (𝐴[,)𝐵)𝑥 = (𝑦𝐶) ↔ ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
5538, 54mpbid 146 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))) → ∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
5655ralrimiva 2539 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶))
57 icoshftf1o.1 . . 3 𝐹 = (𝑥 ∈ (𝐴[,)𝐵) ↦ (𝑥 + 𝐶))
5857f1ompt 5636 . 2 (𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ↔ (∀𝑥 ∈ (𝐴[,)𝐵)(𝑥 + 𝐶) ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶)) ∧ ∀𝑦 ∈ ((𝐴 + 𝐶)[,)(𝐵 + 𝐶))∃!𝑥 ∈ (𝐴[,)𝐵)𝑦 = (𝑥 + 𝐶)))
592, 56, 58sylanbrc 414 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐹:(𝐴[,)𝐵)–1-1-onto→((𝐴 + 𝐶)[,)(𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136  wral 2444  ∃!wreu 2446  wss 3116  cmpt 4043  1-1-ontowf1o 5187  (class class class)co 5842  cr 7752   + caddc 7756  *cxr 7932  cmin 8069  -cneg 8070  [,)cico 9826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-ico 9830
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator