ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosubel GIF version

Theorem fzosubel 10340
Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzosubel ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴𝐷) ∈ ((𝐵𝐷)..^(𝐶𝐷)))

Proof of Theorem fzosubel
StepHypRef Expression
1 znegcl 9418 . . 3 (𝐷 ∈ ℤ → -𝐷 ∈ ℤ)
2 fzoaddel 10333 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ -𝐷 ∈ ℤ) → (𝐴 + -𝐷) ∈ ((𝐵 + -𝐷)..^(𝐶 + -𝐷)))
31, 2sylan2 286 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + -𝐷) ∈ ((𝐵 + -𝐷)..^(𝐶 + -𝐷)))
4 elfzoelz 10284 . . . . 5 (𝐴 ∈ (𝐵..^𝐶) → 𝐴 ∈ ℤ)
54adantr 276 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℤ)
65zcnd 9511 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐴 ∈ ℂ)
7 simpr 110 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℤ)
87zcnd 9511 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐷 ∈ ℂ)
96, 8negsubd 8404 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴 + -𝐷) = (𝐴𝐷))
10 elfzoel1 10282 . . . . . 6 (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ)
1110adantr 276 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℤ)
1211zcnd 9511 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐵 ∈ ℂ)
1312, 8negsubd 8404 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐵 + -𝐷) = (𝐵𝐷))
14 elfzoel2 10283 . . . . . 6 (𝐴 ∈ (𝐵..^𝐶) → 𝐶 ∈ ℤ)
1514adantr 276 . . . . 5 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℤ)
1615zcnd 9511 . . . 4 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → 𝐶 ∈ ℂ)
1716, 8negsubd 8404 . . 3 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐶 + -𝐷) = (𝐶𝐷))
1813, 17oveq12d 5974 . 2 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → ((𝐵 + -𝐷)..^(𝐶 + -𝐷)) = ((𝐵𝐷)..^(𝐶𝐷)))
193, 9, 183eltr3d 2289 1 ((𝐴 ∈ (𝐵..^𝐶) ∧ 𝐷 ∈ ℤ) → (𝐴𝐷) ∈ ((𝐵𝐷)..^(𝐶𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177  (class class class)co 5956   + caddc 7943  cmin 8258  -cneg 8259  cz 9387  ..^cfzo 10279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-inn 9052  df-n0 9311  df-z 9388  df-uz 9664  df-fz 10146  df-fzo 10280
This theorem is referenced by:  fzosubel2  10341  fzocatel  10345  ccatpfx  11172
  Copyright terms: Public domain W3C validator