| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3jaodan | GIF version | ||
| Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| 3jaodan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3jaodan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| 3jaodan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| Ref | Expression |
|---|---|
| 3jaodan | ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3jaodan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 115 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 3jaodan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 4 | 3 | ex 115 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜒)) |
| 5 | 3jaodan.3 | . . . 4 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 6 | 5 | ex 115 | . . 3 ⊢ (𝜑 → (𝜏 → 𝜒)) |
| 7 | 2, 4, 6 | 3jaod 1315 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃 ∨ 𝜏) → 𝜒)) |
| 8 | 7 | imp 124 | 1 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃 ∨ 𝜏)) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ w3o 979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 |
| This theorem is referenced by: zeo 9431 xrltnsym 9868 xrlttr 9870 xrltso 9871 xrlttri3 9872 xltnegi 9910 xaddcom 9936 xnegdi 9943 xsubge0 9956 qbtwnxr 10347 blssioo 14789 |
| Copyright terms: Public domain | W3C validator |