Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaodan GIF version

Theorem 3jaodan 1285
 Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1 ((𝜑𝜓) → 𝜒)
3jaodan.2 ((𝜑𝜃) → 𝜒)
3jaodan.3 ((𝜑𝜏) → 𝜒)
Assertion
Ref Expression
3jaodan ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4 ((𝜑𝜓) → 𝜒)
21ex 114 . . 3 (𝜑 → (𝜓𝜒))
3 3jaodan.2 . . . 4 ((𝜑𝜃) → 𝜒)
43ex 114 . . 3 (𝜑 → (𝜃𝜒))
5 3jaodan.3 . . . 4 ((𝜑𝜏) → 𝜒)
65ex 114 . . 3 (𝜑 → (𝜏𝜒))
72, 4, 63jaod 1283 . 2 (𝜑 → ((𝜓𝜃𝜏) → 𝜒))
87imp 123 1 ((𝜑 ∧ (𝜓𝜃𝜏)) → 𝜒)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∨ w3o 962 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965 This theorem is referenced by:  zeo  9180  xrltnsym  9609  xrlttr  9611  xrltso  9612  xrlttri3  9613  xltnegi  9648  xaddcom  9674  xnegdi  9681  xsubge0  9694  qbtwnxr  10066  blssioo  12753
 Copyright terms: Public domain W3C validator