Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3jaodan | Unicode version |
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
3jaodan.1 | |
3jaodan.2 | |
3jaodan.3 |
Ref | Expression |
---|---|
3jaodan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jaodan.1 | . . . 4 | |
2 | 1 | ex 114 | . . 3 |
3 | 3jaodan.2 | . . . 4 | |
4 | 3 | ex 114 | . . 3 |
5 | 3jaodan.3 | . . . 4 | |
6 | 5 | ex 114 | . . 3 |
7 | 2, 4, 6 | 3jaod 1294 | . 2 |
8 | 7 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3o 967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 |
This theorem is referenced by: zeo 9296 xrltnsym 9729 xrlttr 9731 xrltso 9732 xrlttri3 9733 xltnegi 9771 xaddcom 9797 xnegdi 9804 xsubge0 9817 qbtwnxr 10193 blssioo 13195 |
Copyright terms: Public domain | W3C validator |