ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jaodan Unicode version

Theorem 3jaodan 1301
Description: Disjunction of 3 antecedents (deduction). (Contributed by NM, 14-Oct-2005.)
Hypotheses
Ref Expression
3jaodan.1  |-  ( (
ph  /\  ps )  ->  ch )
3jaodan.2  |-  ( (
ph  /\  th )  ->  ch )
3jaodan.3  |-  ( (
ph  /\  ta )  ->  ch )
Assertion
Ref Expression
3jaodan  |-  ( (
ph  /\  ( ps  \/  th  \/  ta )
)  ->  ch )

Proof of Theorem 3jaodan
StepHypRef Expression
1 3jaodan.1 . . . 4  |-  ( (
ph  /\  ps )  ->  ch )
21ex 114 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
3 3jaodan.2 . . . 4  |-  ( (
ph  /\  th )  ->  ch )
43ex 114 . . 3  |-  ( ph  ->  ( th  ->  ch ) )
5 3jaodan.3 . . . 4  |-  ( (
ph  /\  ta )  ->  ch )
65ex 114 . . 3  |-  ( ph  ->  ( ta  ->  ch ) )
72, 4, 63jaod 1299 . 2  |-  ( ph  ->  ( ( ps  \/  th  \/  ta )  ->  ch ) )
87imp 123 1  |-  ( (
ph  /\  ( ps  \/  th  \/  ta )
)  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ w3o 972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975
This theorem is referenced by:  zeo  9304  xrltnsym  9737  xrlttr  9739  xrltso  9740  xrlttri3  9741  xltnegi  9779  xaddcom  9805  xnegdi  9812  xsubge0  9825  qbtwnxr  10201  blssioo  13298
  Copyright terms: Public domain W3C validator