ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrltnsym GIF version

Theorem xrltnsym 9172
Description: Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrltnsym ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))

Proof of Theorem xrltnsym
StepHypRef Expression
1 elxr 9156 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9156 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltnsym 7492 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4 rexr 7454 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
5 pnfnlt 9166 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ +∞ < 𝐴)
64, 5syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ¬ +∞ < 𝐴)
76adantr 270 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ +∞ < 𝐴)
8 breq1 3817 . . . . . . 7 (𝐵 = +∞ → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
98adantl 271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐵 < 𝐴 ↔ +∞ < 𝐴))
107, 9mtbird 631 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
1110a1d 22 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
12 nltmnf 9167 . . . . . . . 8 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
134, 12syl 14 . . . . . . 7 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
1413adantr 270 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
15 breq2 3818 . . . . . . 7 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
1615adantl 271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
1714, 16mtbird 631 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
1817pm2.21d 582 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
193, 11, 183jaodan 1240 . . 3 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
20 pnfnlt 9166 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
2120adantl 271 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
22 breq1 3817 . . . . . . 7 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2322adantr 270 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
2421, 23mtbird 631 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ 𝐴 < 𝐵)
2524pm2.21d 582 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
262, 25sylan2br 282 . . 3 ((𝐴 = +∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
27 rexr 7454 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
28 nltmnf 9167 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ 𝐵 < -∞)
2927, 28syl 14 . . . . . . 7 (𝐵 ∈ ℝ → ¬ 𝐵 < -∞)
3029adantl 271 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < -∞)
31 breq2 3818 . . . . . . 7 (𝐴 = -∞ → (𝐵 < 𝐴𝐵 < -∞))
3231adantr 270 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵 < -∞))
3330, 32mtbird 631 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ¬ 𝐵 < 𝐴)
3433a1d 22 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
35 mnfxr 7465 . . . . . . . 8 -∞ ∈ ℝ*
36 pnfnlt 9166 . . . . . . . 8 (-∞ ∈ ℝ* → ¬ +∞ < -∞)
3735, 36ax-mp 7 . . . . . . 7 ¬ +∞ < -∞
38 breq12 3819 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐴 = -∞) → (𝐵 < 𝐴 ↔ +∞ < -∞))
3937, 38mtbiri 633 . . . . . 6 ((𝐵 = +∞ ∧ 𝐴 = -∞) → ¬ 𝐵 < 𝐴)
4039ancoms 264 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ¬ 𝐵 < 𝐴)
4140a1d 22 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
42 xrltnr 9159 . . . . . . 7 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
4335, 42ax-mp 7 . . . . . 6 ¬ -∞ < -∞
44 breq12 3819 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 ↔ -∞ < -∞))
4543, 44mtbiri 633 . . . . 5 ((𝐴 = -∞ ∧ 𝐵 = -∞) → ¬ 𝐴 < 𝐵)
4645pm2.21d 582 . . . 4 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4734, 41, 463jaodan 1240 . . 3 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
4819, 26, 473jaoian 1239 . 2 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
491, 2, 48syl2anb 285 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3o 921   = wceq 1287  wcel 1436   class class class wbr 3814  cr 7270  +∞cpnf 7440  -∞cmnf 7441  *cxr 7442   < clt 7443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-pre-ltirr 7378  ax-pre-lttrn 7380
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-xp 4410  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448
This theorem is referenced by:  xrltnsym2  9173  xrltle  9177
  Copyright terms: Public domain W3C validator