Step | Hyp | Ref
| Expression |
1 | | remet.1 |
. . . . 5
β’ π· = ((abs β β )
βΎ (β Γ β)) |
2 | 1 | rexmet 14044 |
. . . 4
β’ π· β
(βMetββ) |
3 | | blrn 13915 |
. . . 4
β’ (π· β
(βMetββ) β (π§ β ran (ballβπ·) β βπ¦ β β βπ β β* π§ = (π¦(ballβπ·)π))) |
4 | 2, 3 | ax-mp 5 |
. . 3
β’ (π§ β ran (ballβπ·) β βπ¦ β β βπ β β*
π§ = (π¦(ballβπ·)π)) |
5 | | elxr 9776 |
. . . . . 6
β’ (π β β*
β (π β β
β¨ π = +β β¨
π =
-β)) |
6 | 1 | bl2ioo 14045 |
. . . . . . . 8
β’ ((π¦ β β β§ π β β) β (π¦(ballβπ·)π) = ((π¦ β π)(,)(π¦ + π))) |
7 | | resubcl 8221 |
. . . . . . . . 9
β’ ((π¦ β β β§ π β β) β (π¦ β π) β β) |
8 | | readdcl 7937 |
. . . . . . . . 9
β’ ((π¦ β β β§ π β β) β (π¦ + π) β β) |
9 | | rexr 8003 |
. . . . . . . . . 10
β’ ((π¦ β π) β β β (π¦ β π) β
β*) |
10 | | rexr 8003 |
. . . . . . . . . 10
β’ ((π¦ + π) β β β (π¦ + π) β
β*) |
11 | | ioorebasg 9975 |
. . . . . . . . . 10
β’ (((π¦ β π) β β* β§ (π¦ + π) β β*) β ((π¦ β π)(,)(π¦ + π)) β ran (,)) |
12 | 9, 10, 11 | syl2an 289 |
. . . . . . . . 9
β’ (((π¦ β π) β β β§ (π¦ + π) β β) β ((π¦ β π)(,)(π¦ + π)) β ran (,)) |
13 | 7, 8, 12 | syl2anc 411 |
. . . . . . . 8
β’ ((π¦ β β β§ π β β) β ((π¦ β π)(,)(π¦ + π)) β ran (,)) |
14 | 6, 13 | eqeltrd 2254 |
. . . . . . 7
β’ ((π¦ β β β§ π β β) β (π¦(ballβπ·)π) β ran (,)) |
15 | | oveq2 5883 |
. . . . . . . . 9
β’ (π = +β β (π¦(ballβπ·)π) = (π¦(ballβπ·)+β)) |
16 | 1 | remet 14043 |
. . . . . . . . . 10
β’ π· β
(Metββ) |
17 | | blpnf 13903 |
. . . . . . . . . 10
β’ ((π· β (Metββ)
β§ π¦ β β)
β (π¦(ballβπ·)+β) =
β) |
18 | 16, 17 | mpan 424 |
. . . . . . . . 9
β’ (π¦ β β β (π¦(ballβπ·)+β) = β) |
19 | 15, 18 | sylan9eqr 2232 |
. . . . . . . 8
β’ ((π¦ β β β§ π = +β) β (π¦(ballβπ·)π) = β) |
20 | | ioomax 9948 |
. . . . . . . . 9
β’
(-β(,)+β) = β |
21 | | mnfxr 8014 |
. . . . . . . . . 10
β’ -β
β β* |
22 | | pnfxr 8010 |
. . . . . . . . . 10
β’ +β
β β* |
23 | | ioorebasg 9975 |
. . . . . . . . . 10
β’
((-β β β* β§ +β β
β*) β (-β(,)+β) β ran
(,)) |
24 | 21, 22, 23 | mp2an 426 |
. . . . . . . . 9
β’
(-β(,)+β) β ran (,) |
25 | 20, 24 | eqeltrri 2251 |
. . . . . . . 8
β’ β
β ran (,) |
26 | 19, 25 | eqeltrdi 2268 |
. . . . . . 7
β’ ((π¦ β β β§ π = +β) β (π¦(ballβπ·)π) β ran (,)) |
27 | | oveq2 5883 |
. . . . . . . . 9
β’ (π = -β β (π¦(ballβπ·)π) = (π¦(ballβπ·)-β)) |
28 | | 0xr 8004 |
. . . . . . . . . . . 12
β’ 0 β
β* |
29 | | nltmnf 9788 |
. . . . . . . . . . . 12
β’ (0 β
β* β Β¬ 0 < -β) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . . . 11
β’ Β¬ 0
< -β |
31 | | xblm 13920 |
. . . . . . . . . . . 12
β’ ((π· β
(βMetββ) β§ π¦ β β β§ -β β
β*) β (βπ€ π€ β (π¦(ballβπ·)-β) β 0 <
-β)) |
32 | 2, 21, 31 | mp3an13 1328 |
. . . . . . . . . . 11
β’ (π¦ β β β
(βπ€ π€ β (π¦(ballβπ·)-β) β 0 <
-β)) |
33 | 30, 32 | mtbiri 675 |
. . . . . . . . . 10
β’ (π¦ β β β Β¬
βπ€ π€ β (π¦(ballβπ·)-β)) |
34 | | notm0 3444 |
. . . . . . . . . 10
β’ (Β¬
βπ€ π€ β (π¦(ballβπ·)-β) β (π¦(ballβπ·)-β) = β
) |
35 | 33, 34 | sylib 122 |
. . . . . . . . 9
β’ (π¦ β β β (π¦(ballβπ·)-β) = β
) |
36 | 27, 35 | sylan9eqr 2232 |
. . . . . . . 8
β’ ((π¦ β β β§ π = -β) β (π¦(ballβπ·)π) = β
) |
37 | | iooidg 9909 |
. . . . . . . . . 10
β’ (0 β
β* β (0(,)0) = β
) |
38 | 28, 37 | ax-mp 5 |
. . . . . . . . 9
β’ (0(,)0) =
β
|
39 | | ioorebasg 9975 |
. . . . . . . . . 10
β’ ((0
β β* β§ 0 β β*) β (0(,)0)
β ran (,)) |
40 | 28, 28, 39 | mp2an 426 |
. . . . . . . . 9
β’ (0(,)0)
β ran (,) |
41 | 38, 40 | eqeltrri 2251 |
. . . . . . . 8
β’ β
β ran (,) |
42 | 36, 41 | eqeltrdi 2268 |
. . . . . . 7
β’ ((π¦ β β β§ π = -β) β (π¦(ballβπ·)π) β ran (,)) |
43 | 14, 26, 42 | 3jaodan 1306 |
. . . . . 6
β’ ((π¦ β β β§ (π β β β¨ π = +β β¨ π = -β)) β (π¦(ballβπ·)π) β ran (,)) |
44 | 5, 43 | sylan2b 287 |
. . . . 5
β’ ((π¦ β β β§ π β β*)
β (π¦(ballβπ·)π) β ran (,)) |
45 | | eleq1 2240 |
. . . . 5
β’ (π§ = (π¦(ballβπ·)π) β (π§ β ran (,) β (π¦(ballβπ·)π) β ran (,))) |
46 | 44, 45 | syl5ibrcom 157 |
. . . 4
β’ ((π¦ β β β§ π β β*)
β (π§ = (π¦(ballβπ·)π) β π§ β ran (,))) |
47 | 46 | rexlimivv 2600 |
. . 3
β’
(βπ¦ β
β βπ β
β* π§ =
(π¦(ballβπ·)π) β π§ β ran (,)) |
48 | 4, 47 | sylbi 121 |
. 2
β’ (π§ β ran (ballβπ·) β π§ β ran (,)) |
49 | 48 | ssriv 3160 |
1
β’ ran
(ballβπ·) β ran
(,) |