ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssioo GIF version

Theorem blssioo 12728
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
blssioo ran (ball‘𝐷) ⊆ ran (,)

Proof of Theorem blssioo
Dummy variables 𝑟 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . 5 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 12724 . . . 4 𝐷 ∈ (∞Met‘ℝ)
3 blrn 12595 . . . 4 (𝐷 ∈ (∞Met‘ℝ) → (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟)))
42, 3ax-mp 5 . . 3 (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟))
5 elxr 9575 . . . . . 6 (𝑟 ∈ ℝ* ↔ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞))
61bl2ioo 12725 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) = ((𝑦𝑟)(,)(𝑦 + 𝑟)))
7 resubcl 8038 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦𝑟) ∈ ℝ)
8 readdcl 7758 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 + 𝑟) ∈ ℝ)
9 rexr 7823 . . . . . . . . . 10 ((𝑦𝑟) ∈ ℝ → (𝑦𝑟) ∈ ℝ*)
10 rexr 7823 . . . . . . . . . 10 ((𝑦 + 𝑟) ∈ ℝ → (𝑦 + 𝑟) ∈ ℝ*)
11 ioorebasg 9770 . . . . . . . . . 10 (((𝑦𝑟) ∈ ℝ* ∧ (𝑦 + 𝑟) ∈ ℝ*) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
129, 10, 11syl2an 287 . . . . . . . . 9 (((𝑦𝑟) ∈ ℝ ∧ (𝑦 + 𝑟) ∈ ℝ) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
137, 8, 12syl2anc 408 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
146, 13eqeltrd 2216 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
15 oveq2 5782 . . . . . . . . 9 (𝑟 = +∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)+∞))
161remet 12723 . . . . . . . . . 10 𝐷 ∈ (Met‘ℝ)
17 blpnf 12583 . . . . . . . . . 10 ((𝐷 ∈ (Met‘ℝ) ∧ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)+∞) = ℝ)
1816, 17mpan 420 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)+∞) = ℝ)
1915, 18sylan9eqr 2194 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) = ℝ)
20 ioomax 9743 . . . . . . . . 9 (-∞(,)+∞) = ℝ
21 mnfxr 7834 . . . . . . . . . 10 -∞ ∈ ℝ*
22 pnfxr 7830 . . . . . . . . . 10 +∞ ∈ ℝ*
23 ioorebasg 9770 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
2421, 22, 23mp2an 422 . . . . . . . . 9 (-∞(,)+∞) ∈ ran (,)
2520, 24eqeltrri 2213 . . . . . . . 8 ℝ ∈ ran (,)
2619, 25eqeltrdi 2230 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
27 oveq2 5782 . . . . . . . . 9 (𝑟 = -∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)-∞))
28 0xr 7824 . . . . . . . . . . . 12 0 ∈ ℝ*
29 nltmnf 9586 . . . . . . . . . . . 12 (0 ∈ ℝ* → ¬ 0 < -∞)
3028, 29ax-mp 5 . . . . . . . . . . 11 ¬ 0 < -∞
31 xblm 12600 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈ ℝ*) → (∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ 0 < -∞))
322, 21, 31mp3an13 1306 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ 0 < -∞))
3330, 32mtbiri 664 . . . . . . . . . 10 (𝑦 ∈ ℝ → ¬ ∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞))
34 notm0 3383 . . . . . . . . . 10 (¬ ∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ (𝑦(ball‘𝐷)-∞) = ∅)
3533, 34sylib 121 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)-∞) = ∅)
3627, 35sylan9eqr 2194 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) = ∅)
37 iooidg 9704 . . . . . . . . . 10 (0 ∈ ℝ* → (0(,)0) = ∅)
3828, 37ax-mp 5 . . . . . . . . 9 (0(,)0) = ∅
39 ioorebasg 9770 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0) ∈ ran (,))
4028, 28, 39mp2an 422 . . . . . . . . 9 (0(,)0) ∈ ran (,)
4138, 40eqeltrri 2213 . . . . . . . 8 ∅ ∈ ran (,)
4236, 41eqeltrdi 2230 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
4314, 26, 423jaodan 1284 . . . . . 6 ((𝑦 ∈ ℝ ∧ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞)) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
445, 43sylan2b 285 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
45 eleq1 2202 . . . . 5 (𝑧 = (𝑦(ball‘𝐷)𝑟) → (𝑧 ∈ ran (,) ↔ (𝑦(ball‘𝐷)𝑟) ∈ ran (,)))
4644, 45syl5ibrcom 156 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,)))
4746rexlimivv 2555 . . 3 (∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,))
484, 47sylbi 120 . 2 (𝑧 ∈ ran (ball‘𝐷) → 𝑧 ∈ ran (,))
4948ssriv 3101 1 ran (ball‘𝐷) ⊆ ran (,)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 103  wb 104  w3o 961   = wceq 1331  wex 1468  wcel 1480  wrex 2417  wss 3071  c0 3363   class class class wbr 3929   × cxp 4537  ran crn 4540  cres 4541  ccom 4543  cfv 5123  (class class class)co 5774  cr 7631  0cc0 7632   + caddc 7635  +∞cpnf 7809  -∞cmnf 7810  *cxr 7811   < clt 7812  cmin 7945  (,)cioo 9683  abscabs 10781  ∞Metcxmet 12163  Metcmet 12164  ballcbl 12165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-rp 9454  df-xadd 9572  df-ioo 9687  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-psmet 12170  df-xmet 12171  df-met 12172  df-bl 12173
This theorem is referenced by:  tgioo  12729
  Copyright terms: Public domain W3C validator