ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssioo GIF version

Theorem blssioo 15069
Description: The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
blssioo ran (ball‘𝐷) ⊆ ran (,)

Proof of Theorem blssioo
Dummy variables 𝑟 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . . 5 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 15065 . . . 4 𝐷 ∈ (∞Met‘ℝ)
3 blrn 14928 . . . 4 (𝐷 ∈ (∞Met‘ℝ) → (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟)))
42, 3ax-mp 5 . . 3 (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟))
5 elxr 9905 . . . . . 6 (𝑟 ∈ ℝ* ↔ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞))
61bl2ioo 15066 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) = ((𝑦𝑟)(,)(𝑦 + 𝑟)))
7 resubcl 8343 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦𝑟) ∈ ℝ)
8 readdcl 8058 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 + 𝑟) ∈ ℝ)
9 rexr 8125 . . . . . . . . . 10 ((𝑦𝑟) ∈ ℝ → (𝑦𝑟) ∈ ℝ*)
10 rexr 8125 . . . . . . . . . 10 ((𝑦 + 𝑟) ∈ ℝ → (𝑦 + 𝑟) ∈ ℝ*)
11 ioorebasg 10104 . . . . . . . . . 10 (((𝑦𝑟) ∈ ℝ* ∧ (𝑦 + 𝑟) ∈ ℝ*) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
129, 10, 11syl2an 289 . . . . . . . . 9 (((𝑦𝑟) ∈ ℝ ∧ (𝑦 + 𝑟) ∈ ℝ) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
137, 8, 12syl2anc 411 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑦𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,))
146, 13eqeltrd 2283 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
15 oveq2 5959 . . . . . . . . 9 (𝑟 = +∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)+∞))
161remet 15064 . . . . . . . . . 10 𝐷 ∈ (Met‘ℝ)
17 blpnf 14916 . . . . . . . . . 10 ((𝐷 ∈ (Met‘ℝ) ∧ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)+∞) = ℝ)
1816, 17mpan 424 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)+∞) = ℝ)
1915, 18sylan9eqr 2261 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) = ℝ)
20 ioomax 10077 . . . . . . . . 9 (-∞(,)+∞) = ℝ
21 mnfxr 8136 . . . . . . . . . 10 -∞ ∈ ℝ*
22 pnfxr 8132 . . . . . . . . . 10 +∞ ∈ ℝ*
23 ioorebasg 10104 . . . . . . . . . 10 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞(,)+∞) ∈ ran (,))
2421, 22, 23mp2an 426 . . . . . . . . 9 (-∞(,)+∞) ∈ ran (,)
2520, 24eqeltrri 2280 . . . . . . . 8 ℝ ∈ ran (,)
2619, 25eqeltrdi 2297 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
27 oveq2 5959 . . . . . . . . 9 (𝑟 = -∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)-∞))
28 0xr 8126 . . . . . . . . . . . 12 0 ∈ ℝ*
29 nltmnf 9917 . . . . . . . . . . . 12 (0 ∈ ℝ* → ¬ 0 < -∞)
3028, 29ax-mp 5 . . . . . . . . . . 11 ¬ 0 < -∞
31 xblm 14933 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈ ℝ*) → (∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ 0 < -∞))
322, 21, 31mp3an13 1341 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ 0 < -∞))
3330, 32mtbiri 677 . . . . . . . . . 10 (𝑦 ∈ ℝ → ¬ ∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞))
34 notm0 3482 . . . . . . . . . 10 (¬ ∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ (𝑦(ball‘𝐷)-∞) = ∅)
3533, 34sylib 122 . . . . . . . . 9 (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)-∞) = ∅)
3627, 35sylan9eqr 2261 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) = ∅)
37 iooidg 10038 . . . . . . . . . 10 (0 ∈ ℝ* → (0(,)0) = ∅)
3828, 37ax-mp 5 . . . . . . . . 9 (0(,)0) = ∅
39 ioorebasg 10104 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0) ∈ ran (,))
4028, 28, 39mp2an 426 . . . . . . . . 9 (0(,)0) ∈ ran (,)
4138, 40eqeltrri 2280 . . . . . . . 8 ∅ ∈ ran (,)
4236, 41eqeltrdi 2297 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
4314, 26, 423jaodan 1319 . . . . . 6 ((𝑦 ∈ ℝ ∧ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞)) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
445, 43sylan2b 287 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,))
45 eleq1 2269 . . . . 5 (𝑧 = (𝑦(ball‘𝐷)𝑟) → (𝑧 ∈ ran (,) ↔ (𝑦(ball‘𝐷)𝑟) ∈ ran (,)))
4644, 45syl5ibrcom 157 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,)))
4746rexlimivv 2630 . . 3 (∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,))
484, 47sylbi 121 . 2 (𝑧 ∈ ran (ball‘𝐷) → 𝑧 ∈ ran (,))
4948ssriv 3198 1 ran (ball‘𝐷) ⊆ ran (,)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3o 980   = wceq 1373  wex 1516  wcel 2177  wrex 2486  wss 3167  c0 3461   class class class wbr 4047   × cxp 4677  ran crn 4680  cres 4681  ccom 4683  cfv 5276  (class class class)co 5951  cr 7931  0cc0 7932   + caddc 7935  +∞cpnf 8111  -∞cmnf 8112  *cxr 8113   < clt 8114  cmin 8250  (,)cioo 10017  abscabs 11352  ∞Metcxmet 14342  Metcmet 14343  ballcbl 14344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-map 6744  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-n0 9303  df-z 9380  df-uz 9656  df-rp 9783  df-xadd 9902  df-ioo 10021  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352
This theorem is referenced by:  tgioo  15070
  Copyright terms: Public domain W3C validator