Step | Hyp | Ref
| Expression |
1 | | remet.1 |
. . . . 5
⊢ 𝐷 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
2 | 1 | rexmet 13181 |
. . . 4
⊢ 𝐷 ∈
(∞Met‘ℝ) |
3 | | blrn 13052 |
. . . 4
⊢ (𝐷 ∈
(∞Met‘ℝ) → (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ* 𝑧 = (𝑦(ball‘𝐷)𝑟))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢ (𝑧 ∈ ran (ball‘𝐷) ↔ ∃𝑦 ∈ ℝ ∃𝑟 ∈ ℝ*
𝑧 = (𝑦(ball‘𝐷)𝑟)) |
5 | | elxr 9712 |
. . . . . 6
⊢ (𝑟 ∈ ℝ*
↔ (𝑟 ∈ ℝ
∨ 𝑟 = +∞ ∨
𝑟 =
-∞)) |
6 | 1 | bl2ioo 13182 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) = ((𝑦 − 𝑟)(,)(𝑦 + 𝑟))) |
7 | | resubcl 8162 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 − 𝑟) ∈ ℝ) |
8 | | readdcl 7879 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦 + 𝑟) ∈ ℝ) |
9 | | rexr 7944 |
. . . . . . . . . 10
⊢ ((𝑦 − 𝑟) ∈ ℝ → (𝑦 − 𝑟) ∈
ℝ*) |
10 | | rexr 7944 |
. . . . . . . . . 10
⊢ ((𝑦 + 𝑟) ∈ ℝ → (𝑦 + 𝑟) ∈
ℝ*) |
11 | | ioorebasg 9911 |
. . . . . . . . . 10
⊢ (((𝑦 − 𝑟) ∈ ℝ* ∧ (𝑦 + 𝑟) ∈ ℝ*) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
12 | 9, 10, 11 | syl2an 287 |
. . . . . . . . 9
⊢ (((𝑦 − 𝑟) ∈ ℝ ∧ (𝑦 + 𝑟) ∈ ℝ) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
13 | 7, 8, 12 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((𝑦 − 𝑟)(,)(𝑦 + 𝑟)) ∈ ran (,)) |
14 | 6, 13 | eqeltrd 2243 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
15 | | oveq2 5850 |
. . . . . . . . 9
⊢ (𝑟 = +∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)+∞)) |
16 | 1 | remet 13180 |
. . . . . . . . . 10
⊢ 𝐷 ∈
(Met‘ℝ) |
17 | | blpnf 13040 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘ℝ)
∧ 𝑦 ∈ ℝ)
→ (𝑦(ball‘𝐷)+∞) =
ℝ) |
18 | 16, 17 | mpan 421 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)+∞) = ℝ) |
19 | 15, 18 | sylan9eqr 2221 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) = ℝ) |
20 | | ioomax 9884 |
. . . . . . . . 9
⊢
(-∞(,)+∞) = ℝ |
21 | | mnfxr 7955 |
. . . . . . . . . 10
⊢ -∞
∈ ℝ* |
22 | | pnfxr 7951 |
. . . . . . . . . 10
⊢ +∞
∈ ℝ* |
23 | | ioorebasg 9911 |
. . . . . . . . . 10
⊢
((-∞ ∈ ℝ* ∧ +∞ ∈
ℝ*) → (-∞(,)+∞) ∈ ran
(,)) |
24 | 21, 22, 23 | mp2an 423 |
. . . . . . . . 9
⊢
(-∞(,)+∞) ∈ ran (,) |
25 | 20, 24 | eqeltrri 2240 |
. . . . . . . 8
⊢ ℝ
∈ ran (,) |
26 | 19, 25 | eqeltrdi 2257 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = +∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
27 | | oveq2 5850 |
. . . . . . . . 9
⊢ (𝑟 = -∞ → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)-∞)) |
28 | | 0xr 7945 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
29 | | nltmnf 9724 |
. . . . . . . . . . . 12
⊢ (0 ∈
ℝ* → ¬ 0 < -∞) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ¬ 0
< -∞ |
31 | | xblm 13057 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈
(∞Met‘ℝ) ∧ 𝑦 ∈ ℝ ∧ -∞ ∈
ℝ*) → (∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ 0 <
-∞)) |
32 | 2, 21, 31 | mp3an13 1318 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℝ →
(∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ 0 <
-∞)) |
33 | 30, 32 | mtbiri 665 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℝ → ¬
∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞)) |
34 | | notm0 3429 |
. . . . . . . . . 10
⊢ (¬
∃𝑤 𝑤 ∈ (𝑦(ball‘𝐷)-∞) ↔ (𝑦(ball‘𝐷)-∞) = ∅) |
35 | 33, 34 | sylib 121 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ → (𝑦(ball‘𝐷)-∞) = ∅) |
36 | 27, 35 | sylan9eqr 2221 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) = ∅) |
37 | | iooidg 9845 |
. . . . . . . . . 10
⊢ (0 ∈
ℝ* → (0(,)0) = ∅) |
38 | 28, 37 | ax-mp 5 |
. . . . . . . . 9
⊢ (0(,)0) =
∅ |
39 | | ioorebasg 9911 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ 0 ∈ ℝ*) → (0(,)0)
∈ ran (,)) |
40 | 28, 28, 39 | mp2an 423 |
. . . . . . . . 9
⊢ (0(,)0)
∈ ran (,) |
41 | 38, 40 | eqeltrri 2240 |
. . . . . . . 8
⊢ ∅
∈ ran (,) |
42 | 36, 41 | eqeltrdi 2257 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 = -∞) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
43 | 14, 26, 42 | 3jaodan 1296 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ (𝑟 ∈ ℝ ∨ 𝑟 = +∞ ∨ 𝑟 = -∞)) → (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
44 | 5, 43 | sylan2b 285 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*)
→ (𝑦(ball‘𝐷)𝑟) ∈ ran (,)) |
45 | | eleq1 2229 |
. . . . 5
⊢ (𝑧 = (𝑦(ball‘𝐷)𝑟) → (𝑧 ∈ ran (,) ↔ (𝑦(ball‘𝐷)𝑟) ∈ ran (,))) |
46 | 44, 45 | syl5ibrcom 156 |
. . . 4
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*)
→ (𝑧 = (𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,))) |
47 | 46 | rexlimivv 2589 |
. . 3
⊢
(∃𝑦 ∈
ℝ ∃𝑟 ∈
ℝ* 𝑧 =
(𝑦(ball‘𝐷)𝑟) → 𝑧 ∈ ran (,)) |
48 | 4, 47 | sylbi 120 |
. 2
⊢ (𝑧 ∈ ran (ball‘𝐷) → 𝑧 ∈ ran (,)) |
49 | 48 | ssriv 3146 |
1
⊢ ran
(ball‘𝐷) ⊆ ran
(,) |