Proof of Theorem xsubge0
Step | Hyp | Ref
| Expression |
1 | | elxr 9733 |
. 2
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) |
2 | | 0xr 7966 |
. . . . 5
⊢ 0 ∈
ℝ* |
3 | | rexr 7965 |
. . . . . 6
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
4 | | xnegcl 9789 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ -𝑒𝐵 ∈
ℝ*) |
5 | | xaddcl 9817 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒
-𝑒𝐵)
∈ ℝ*) |
6 | 4, 5 | sylan2 284 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 +𝑒
-𝑒𝐵)
∈ ℝ*) |
7 | 3, 6 | sylan2 284 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴
+𝑒 -𝑒𝐵) ∈
ℝ*) |
8 | | simpr 109 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ 𝐵 ∈
ℝ) |
9 | | xleadd1 9832 |
. . . . 5
⊢ ((0
∈ ℝ* ∧ (𝐴 +𝑒
-𝑒𝐵)
∈ ℝ* ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒
-𝑒𝐵)
↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒
-𝑒𝐵)
+𝑒 𝐵))) |
10 | 2, 7, 8, 9 | mp3an2i 1337 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒
-𝑒𝐵)
+𝑒 𝐵))) |
11 | 3 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ 𝐵 ∈
ℝ*) |
12 | | xaddid2 9820 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ (0 +𝑒 𝐵) = 𝐵) |
13 | 11, 12 | syl 14 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (0 +𝑒 𝐵) = 𝐵) |
14 | | xnpcan 9829 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((𝐴
+𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) |
15 | 13, 14 | breq12d 4002 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((0 +𝑒 𝐵) ≤ ((𝐴 +𝑒
-𝑒𝐵)
+𝑒 𝐵)
↔ 𝐵 ≤ 𝐴)) |
16 | 10, 15 | bitrd 187 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
17 | | pnfxr 7972 |
. . . . . . 7
⊢ +∞
∈ ℝ* |
18 | | xrletri3 9761 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ +∞ ∈ ℝ*) → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴))) |
19 | 17, 18 | mpan2 423 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = +∞ ↔
(𝐴 ≤ +∞ ∧
+∞ ≤ 𝐴))) |
20 | | rexr 7965 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
21 | | renepnf 7967 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) |
22 | | xaddmnf1 9805 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ +∞)
→ (𝐴
+𝑒 -∞) = -∞) |
23 | 20, 21, 22 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞)
= -∞) |
24 | | mnflt0 9741 |
. . . . . . . . . . . . 13
⊢ -∞
< 0 |
25 | | mnfxr 7976 |
. . . . . . . . . . . . . . 15
⊢ -∞
∈ ℝ* |
26 | | xrlenlt 7984 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℝ* ∧ -∞ ∈ ℝ*) → (0
≤ -∞ ↔ ¬ -∞ < 0)) |
27 | 2, 25, 26 | mp2an 424 |
. . . . . . . . . . . . . 14
⊢ (0 ≤
-∞ ↔ ¬ -∞ < 0) |
28 | 27 | biimpi 119 |
. . . . . . . . . . . . 13
⊢ (0 ≤
-∞ → ¬ -∞ < 0) |
29 | 24, 28 | mt2 635 |
. . . . . . . . . . . 12
⊢ ¬ 0
≤ -∞ |
30 | | breq2 3993 |
. . . . . . . . . . . 12
⊢ ((𝐴 +𝑒 -∞)
= -∞ → (0 ≤ (𝐴 +𝑒 -∞) ↔ 0
≤ -∞)) |
31 | 29, 30 | mtbiri 670 |
. . . . . . . . . . 11
⊢ ((𝐴 +𝑒 -∞)
= -∞ → ¬ 0 ≤ (𝐴 +𝑒
-∞)) |
32 | 31 | pm2.21d 614 |
. . . . . . . . . 10
⊢ ((𝐴 +𝑒 -∞)
= -∞ → (0 ≤ (𝐴 +𝑒 -∞) →
𝐴 =
+∞)) |
33 | 23, 32 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → (0 ≤
(𝐴 +𝑒
-∞) → 𝐴 =
+∞)) |
34 | 33 | adantl 275 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ∈ ℝ)
→ (0 ≤ (𝐴
+𝑒 -∞) → 𝐴 = +∞)) |
35 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = +∞) →
𝐴 =
+∞) |
36 | 35 | a1d 22 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = +∞) →
(0 ≤ (𝐴
+𝑒 -∞) → 𝐴 = +∞)) |
37 | | eleq1 2233 |
. . . . . . . . . . . 12
⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ*
↔ -∞ ∈ ℝ*)) |
38 | 25, 37 | mpbiri 167 |
. . . . . . . . . . 11
⊢ (𝐴 = -∞ → 𝐴 ∈
ℝ*) |
39 | | mnfnepnf 7975 |
. . . . . . . . . . . 12
⊢ -∞
≠ +∞ |
40 | | neeq1 2353 |
. . . . . . . . . . . 12
⊢ (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞
≠ +∞)) |
41 | 39, 40 | mpbiri 167 |
. . . . . . . . . . 11
⊢ (𝐴 = -∞ → 𝐴 ≠ +∞) |
42 | 38, 41, 22 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝐴 = -∞ → (𝐴 +𝑒 -∞)
= -∞) |
43 | 42, 32 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 = -∞ → (0 ≤
(𝐴 +𝑒
-∞) → 𝐴 =
+∞)) |
44 | 43 | adantl 275 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = -∞) →
(0 ≤ (𝐴
+𝑒 -∞) → 𝐴 = +∞)) |
45 | | elxr 9733 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
46 | 45 | biimpi 119 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
47 | 34, 36, 44, 46 | mpjao3dan 1302 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 -∞) → 𝐴 = +∞)) |
48 | | 0le0 8967 |
. . . . . . . 8
⊢ 0 ≤
0 |
49 | | oveq1 5860 |
. . . . . . . . 9
⊢ (𝐴 = +∞ → (𝐴 +𝑒 -∞)
= (+∞ +𝑒 -∞)) |
50 | | pnfaddmnf 9807 |
. . . . . . . . 9
⊢ (+∞
+𝑒 -∞) = 0 |
51 | 49, 50 | eqtrdi 2219 |
. . . . . . . 8
⊢ (𝐴 = +∞ → (𝐴 +𝑒 -∞)
= 0) |
52 | 48, 51 | breqtrrid 4027 |
. . . . . . 7
⊢ (𝐴 = +∞ → 0 ≤ (𝐴 +𝑒
-∞)) |
53 | 47, 52 | impbid1 141 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 -∞) ↔ 𝐴 = +∞)) |
54 | | pnfge 9746 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ≤
+∞) |
55 | 54 | biantrurd 303 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (+∞ ≤ 𝐴
↔ (𝐴 ≤ +∞
∧ +∞ ≤ 𝐴))) |
56 | 19, 53, 55 | 3bitr4d 219 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 -∞) ↔ +∞ ≤ 𝐴)) |
57 | 56 | adantr 274 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(0 ≤ (𝐴
+𝑒 -∞) ↔ +∞ ≤ 𝐴)) |
58 | | xnegeq 9784 |
. . . . . . . 8
⊢ (𝐵 = +∞ →
-𝑒𝐵 =
-𝑒+∞) |
59 | | xnegpnf 9785 |
. . . . . . . 8
⊢
-𝑒+∞ = -∞ |
60 | 58, 59 | eqtrdi 2219 |
. . . . . . 7
⊢ (𝐵 = +∞ →
-𝑒𝐵 =
-∞) |
61 | 60 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
-𝑒𝐵 =
-∞) |
62 | 61 | oveq2d 5869 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(𝐴 +𝑒
-𝑒𝐵) =
(𝐴 +𝑒
-∞)) |
63 | 62 | breq2d 4001 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒
-∞))) |
64 | | breq1 3992 |
. . . . 5
⊢ (𝐵 = +∞ → (𝐵 ≤ 𝐴 ↔ +∞ ≤ 𝐴)) |
65 | 64 | adantl 275 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(𝐵 ≤ 𝐴 ↔ +∞ ≤ 𝐴)) |
66 | 57, 63, 65 | 3bitr4d 219 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = +∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
67 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝐴 = -∞ → (𝐴 +𝑒 +∞)
= (-∞ +𝑒 +∞)) |
68 | | mnfaddpnf 9808 |
. . . . . . . . . 10
⊢ (-∞
+𝑒 +∞) = 0 |
69 | 67, 68 | eqtrdi 2219 |
. . . . . . . . 9
⊢ (𝐴 = -∞ → (𝐴 +𝑒 +∞)
= 0) |
70 | 69 | adantl 275 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = -∞) →
(𝐴 +𝑒
+∞) = 0) |
71 | 48, 70 | breqtrrid 4027 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = -∞) →
0 ≤ (𝐴
+𝑒 +∞)) |
72 | | df-ne 2341 |
. . . . . . . 8
⊢ (𝐴 ≠ -∞ ↔ ¬
𝐴 =
-∞) |
73 | | 0lepnf 9747 |
. . . . . . . . 9
⊢ 0 ≤
+∞ |
74 | | xaddpnf1 9803 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
→ (𝐴
+𝑒 +∞) = +∞) |
75 | 73, 74 | breqtrrid 4027 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
→ 0 ≤ (𝐴
+𝑒 +∞)) |
76 | 72, 75 | sylan2br 286 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ ¬ 𝐴 = -∞)
→ 0 ≤ (𝐴
+𝑒 +∞)) |
77 | | xrmnfdc 9800 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ*
→ DECID 𝐴 = -∞) |
78 | | exmiddc 831 |
. . . . . . . 8
⊢
(DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞)) |
79 | 77, 78 | syl 14 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = -∞ ∨
¬ 𝐴 =
-∞)) |
80 | 71, 76, 79 | mpjaodan 793 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ 0 ≤ (𝐴
+𝑒 +∞)) |
81 | | mnfle 9749 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ -∞ ≤ 𝐴) |
82 | 80, 81 | 2thd 174 |
. . . . 5
⊢ (𝐴 ∈ ℝ*
→ (0 ≤ (𝐴
+𝑒 +∞) ↔ -∞ ≤ 𝐴)) |
83 | 82 | adantr 274 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(0 ≤ (𝐴
+𝑒 +∞) ↔ -∞ ≤ 𝐴)) |
84 | | xnegeq 9784 |
. . . . . . . 8
⊢ (𝐵 = -∞ →
-𝑒𝐵 =
-𝑒-∞) |
85 | | xnegmnf 9786 |
. . . . . . . 8
⊢
-𝑒-∞ = +∞ |
86 | 84, 85 | eqtrdi 2219 |
. . . . . . 7
⊢ (𝐵 = -∞ →
-𝑒𝐵 =
+∞) |
87 | 86 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
-𝑒𝐵 =
+∞) |
88 | 87 | oveq2d 5869 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 +𝑒
-𝑒𝐵) =
(𝐴 +𝑒
+∞)) |
89 | 88 | breq2d 4001 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒
+∞))) |
90 | | breq1 3992 |
. . . . 5
⊢ (𝐵 = -∞ → (𝐵 ≤ 𝐴 ↔ -∞ ≤ 𝐴)) |
91 | 90 | adantl 275 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐵 ≤ 𝐴 ↔ -∞ ≤ 𝐴)) |
92 | 83, 89, 91 | 3bitr4d 219 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(0 ≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
93 | 16, 66, 92 | 3jaodan 1301 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 = -∞)) → (0
≤ (𝐴
+𝑒 -𝑒𝐵) ↔ 𝐵 ≤ 𝐴)) |
94 | 1, 93 | sylan2b 285 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (0 ≤ (𝐴 +𝑒
-𝑒𝐵)
↔ 𝐵 ≤ 𝐴)) |