ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xsubge0 GIF version

Theorem xsubge0 9808
Description: Extended real version of subge0 8364. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xsubge0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))

Proof of Theorem xsubge0
StepHypRef Expression
1 elxr 9703 . 2 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
2 0xr 7936 . . . . 5 0 ∈ ℝ*
3 rexr 7935 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
4 xnegcl 9759 . . . . . . 7 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
5 xaddcl 9787 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
64, 5sylan2 284 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
73, 6sylan2 284 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
8 simpr 109 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
9 xleadd1 9802 . . . . 5 ((0 ∈ ℝ* ∧ (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
102, 7, 8, 9mp3an2i 1331 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ (0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵)))
113adantl 275 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 ∈ ℝ*)
12 xaddid2 9790 . . . . . 6 (𝐵 ∈ ℝ* → (0 +𝑒 𝐵) = 𝐵)
1311, 12syl 14 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 +𝑒 𝐵) = 𝐵)
14 xnpcan 9799 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1513, 14breq12d 3989 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((0 +𝑒 𝐵) ≤ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ↔ 𝐵𝐴))
1610, 15bitrd 187 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
17 pnfxr 7942 . . . . . . 7 +∞ ∈ ℝ*
18 xrletri3 9731 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
1917, 18mpan2 422 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
20 rexr 7935 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
21 renepnf 7937 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
22 xaddmnf1 9775 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2320, 21, 22syl2anc 409 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 +𝑒 -∞) = -∞)
24 mnflt0 9711 . . . . . . . . . . . . 13 -∞ < 0
25 mnfxr 7946 . . . . . . . . . . . . . . 15 -∞ ∈ ℝ*
26 xrlenlt 7954 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ -∞ ∈ ℝ*) → (0 ≤ -∞ ↔ ¬ -∞ < 0))
272, 25, 26mp2an 423 . . . . . . . . . . . . . 14 (0 ≤ -∞ ↔ ¬ -∞ < 0)
2827biimpi 119 . . . . . . . . . . . . 13 (0 ≤ -∞ → ¬ -∞ < 0)
2924, 28mt2 630 . . . . . . . . . . . 12 ¬ 0 ≤ -∞
30 breq2 3980 . . . . . . . . . . . 12 ((𝐴 +𝑒 -∞) = -∞ → (0 ≤ (𝐴 +𝑒 -∞) ↔ 0 ≤ -∞))
3129, 30mtbiri 665 . . . . . . . . . . 11 ((𝐴 +𝑒 -∞) = -∞ → ¬ 0 ≤ (𝐴 +𝑒 -∞))
3231pm2.21d 609 . . . . . . . . . 10 ((𝐴 +𝑒 -∞) = -∞ → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
3323, 32syl 14 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
3433adantl 275 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ∈ ℝ) → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
35 simpr 109 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 = +∞) → 𝐴 = +∞)
3635a1d 22 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 = +∞) → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
37 eleq1 2227 . . . . . . . . . . . 12 (𝐴 = -∞ → (𝐴 ∈ ℝ* ↔ -∞ ∈ ℝ*))
3825, 37mpbiri 167 . . . . . . . . . . 11 (𝐴 = -∞ → 𝐴 ∈ ℝ*)
39 mnfnepnf 7945 . . . . . . . . . . . 12 -∞ ≠ +∞
40 neeq1 2347 . . . . . . . . . . . 12 (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞))
4139, 40mpbiri 167 . . . . . . . . . . 11 (𝐴 = -∞ → 𝐴 ≠ +∞)
4238, 41, 22syl2anc 409 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 +𝑒 -∞) = -∞)
4342, 32syl 14 . . . . . . . . 9 (𝐴 = -∞ → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
4443adantl 275 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 = -∞) → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
45 elxr 9703 . . . . . . . . 9 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
4645biimpi 119 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
4734, 36, 44, 46mpjao3dan 1296 . . . . . . 7 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) → 𝐴 = +∞))
48 0le0 8937 . . . . . . . 8 0 ≤ 0
49 oveq1 5843 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
50 pnfaddmnf 9777 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
5149, 50eqtrdi 2213 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
5248, 51breqtrrid 4014 . . . . . . 7 (𝐴 = +∞ → 0 ≤ (𝐴 +𝑒 -∞))
5347, 52impbid1 141 . . . . . 6 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ 𝐴 = +∞))
54 pnfge 9716 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
5554biantrurd 303 . . . . . 6 (𝐴 ∈ ℝ* → (+∞ ≤ 𝐴 ↔ (𝐴 ≤ +∞ ∧ +∞ ≤ 𝐴)))
5619, 53, 553bitr4d 219 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
5756adantr 274 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -∞) ↔ +∞ ≤ 𝐴))
58 xnegeq 9754 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
59 xnegpnf 9755 . . . . . . . 8 -𝑒+∞ = -∞
6058, 59eqtrdi 2213 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
6160adantl 275 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = +∞) → -𝑒𝐵 = -∞)
6261oveq2d 5852 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
6362breq2d 3988 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 -∞)))
64 breq1 3979 . . . . 5 (𝐵 = +∞ → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
6564adantl 275 . . . 4 ((𝐴 ∈ ℝ*𝐵 = +∞) → (𝐵𝐴 ↔ +∞ ≤ 𝐴))
6657, 63, 653bitr4d 219 . . 3 ((𝐴 ∈ ℝ*𝐵 = +∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
67 oveq1 5843 . . . . . . . . . 10 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = (-∞ +𝑒 +∞))
68 mnfaddpnf 9778 . . . . . . . . . 10 (-∞ +𝑒 +∞) = 0
6967, 68eqtrdi 2213 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 +𝑒 +∞) = 0)
7069adantl 275 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 = -∞) → (𝐴 +𝑒 +∞) = 0)
7148, 70breqtrrid 4014 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 = -∞) → 0 ≤ (𝐴 +𝑒 +∞))
72 df-ne 2335 . . . . . . . 8 (𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞)
73 0lepnf 9717 . . . . . . . . 9 0 ≤ +∞
74 xaddpnf1 9773 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
7573, 74breqtrrid 4014 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → 0 ≤ (𝐴 +𝑒 +∞))
7672, 75sylan2br 286 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ ¬ 𝐴 = -∞) → 0 ≤ (𝐴 +𝑒 +∞))
77 xrmnfdc 9770 . . . . . . . 8 (𝐴 ∈ ℝ*DECID 𝐴 = -∞)
78 exmiddc 826 . . . . . . . 8 (DECID 𝐴 = -∞ → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
7977, 78syl 14 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 = -∞ ∨ ¬ 𝐴 = -∞))
8071, 76, 79mpjaodan 788 . . . . . 6 (𝐴 ∈ ℝ* → 0 ≤ (𝐴 +𝑒 +∞))
81 mnfle 9719 . . . . . 6 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
8280, 812thd 174 . . . . 5 (𝐴 ∈ ℝ* → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
8382adantr 274 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 +∞) ↔ -∞ ≤ 𝐴))
84 xnegeq 9754 . . . . . . . 8 (𝐵 = -∞ → -𝑒𝐵 = -𝑒-∞)
85 xnegmnf 9756 . . . . . . . 8 -𝑒-∞ = +∞
8684, 85eqtrdi 2213 . . . . . . 7 (𝐵 = -∞ → -𝑒𝐵 = +∞)
8786adantl 275 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 = -∞) → -𝑒𝐵 = +∞)
8887oveq2d 5852 . . . . 5 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 +∞))
8988breq2d 3988 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 0 ≤ (𝐴 +𝑒 +∞)))
90 breq1 3979 . . . . 5 (𝐵 = -∞ → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
9190adantl 275 . . . 4 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐵𝐴 ↔ -∞ ≤ 𝐴))
9283, 89, 913bitr4d 219 . . 3 ((𝐴 ∈ ℝ*𝐵 = -∞) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
9316, 66, 923jaodan 1295 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
941, 93sylan2b 285 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824  w3o 966   = wceq 1342  wcel 2135  wne 2334   class class class wbr 3976  (class class class)co 5836  cr 7743  0cc0 7744  +∞cpnf 7921  -∞cmnf 7922  *cxr 7923   < clt 7924  cle 7925  -𝑒cxne 9696   +𝑒 cxad 9697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-xneg 9699  df-xadd 9700
This theorem is referenced by:  ssblps  12966  ssbl  12967
  Copyright terms: Public domain W3C validator