ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo GIF version

Theorem zeo 9054
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 8954 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 5733 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 8695 . . . . . . . 8 2 ∈ ℂ
4 2ap0 8717 . . . . . . . 8 2 # 0
53, 4div0api 8413 . . . . . . 7 (0 / 2) = 0
6 0z 8963 . . . . . . 7 0 ∈ ℤ
75, 6eqeltri 2185 . . . . . 6 (0 / 2) ∈ ℤ
82, 7syl6eqel 2203 . . . . 5 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98orcd 705 . . . 4 (𝑁 = 0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 273 . . 3 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
11 nneoor 9051 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
12 nnz 8971 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
13 nnz 8971 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1412, 13orim12i 731 . . . . 5 (((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1511, 14syl 14 . . . 4 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1615adantl 273 . . 3 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
17 nneoor 9051 . . . . 5 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ))
1817adantl 273 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ))
19 recn 7671 . . . . . . . . . 10 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divnegap 8373 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1288 . . . . . . . . . 10 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 14 . . . . . . . . 9 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2181 . . . . . . . 8 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 8955 . . . . . . . 8 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24syl6bir 163 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 8862 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 7981 . . . . . . . 8 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2181 . . . . . . 7 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 148 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
30 nnz 8971 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
31 peano2zm 8990 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
32 ax-1cn 7632 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3332, 3negsubdi2i 7965 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
34 2m1e1 8742 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
3533, 34eqtr2i 2134 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
3632, 3subcli 7955 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
3732, 36negcon2i 7962 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
3835, 37mpbi 144 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
3938oveq2i 5737 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
40 negcl 7879 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
41 addsubass 7889 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4232, 3, 41mp3an23 1288 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4340, 42syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
44 negdi 7936 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
4532, 44mpan2 419 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
4639, 43, 453eqtr4a 2171 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
4746oveq1d 5741 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
48 peano2cn 7814 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
4940, 48syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
503, 4pm3.2i 268 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 # 0)
51 divsubdirap 8375 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
523, 50, 51mp3an23 1288 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
5349, 52syl 14 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
54 2div2e1 8750 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
5554eqcomi 2117 . . . . . . . . . . . . . . 15 1 = (2 / 2)
5655oveq2i 5737 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
5753, 56syl6reqr 2164 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
58 peano2cn 7814 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
59 divnegap 8373 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
603, 4, 59mp3an23 1288 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6158, 60syl 14 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6247, 57, 613eqtr4d 2155 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6319, 62syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6463eleq1d 2181 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
6531, 64syl5ib 153 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
66 znegcl 8983 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
6765, 66syl6 33 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
68 peano2re 7815 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6968recnd 7712 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7069halfcld 8862 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7170negnegd 7981 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7271eleq1d 2181 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7367, 72sylibd 148 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7430, 73syl5 32 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
7529, 74orim12d 758 . . . . 5 (𝑁 ∈ ℝ → (((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)))
7675adantr 272 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)))
7718, 76mpd 13 . . 3 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
7810, 16, 773jaodan 1265 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
791, 78sylbi 120 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 680  w3o 942   = wceq 1312  wcel 1461   class class class wbr 3893  (class class class)co 5726  cc 7539  cr 7540  0cc0 7541  1c1 7542   + caddc 7544  cmin 7850  -cneg 7851   # cap 8255   / cdiv 8339  cn 8624  2c2 8675  cz 8952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-br 3894  df-opab 3948  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-n0 8876  df-z 8953
This theorem is referenced by:  zeo2  9055  zeo3  11407  mulsucdiv2z  11424
  Copyright terms: Public domain W3C validator