Proof of Theorem zeo
| Step | Hyp | Ref
 | Expression | 
| 1 |   | elz 9328 | 
. 2
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) | 
| 2 |   | oveq1 5929 | 
. . . . . 6
⊢ (𝑁 = 0 → (𝑁 / 2) = (0 / 2)) | 
| 3 |   | 2cn 9061 | 
. . . . . . . 8
⊢ 2 ∈
ℂ | 
| 4 |   | 2ap0 9083 | 
. . . . . . . 8
⊢ 2 #
0 | 
| 5 | 3, 4 | div0api 8773 | 
. . . . . . 7
⊢ (0 / 2) =
0 | 
| 6 |   | 0z 9337 | 
. . . . . . 7
⊢ 0 ∈
ℤ | 
| 7 | 5, 6 | eqeltri 2269 | 
. . . . . 6
⊢ (0 / 2)
∈ ℤ | 
| 8 | 2, 7 | eqeltrdi 2287 | 
. . . . 5
⊢ (𝑁 = 0 → (𝑁 / 2) ∈ ℤ) | 
| 9 | 8 | orcd 734 | 
. . . 4
⊢ (𝑁 = 0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 10 | 9 | adantl 277 | 
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 11 |   | nneoor 9428 | 
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨
((𝑁 + 1) / 2) ∈
ℕ)) | 
| 12 |   | nnz 9345 | 
. . . . . 6
⊢ ((𝑁 / 2) ∈ ℕ →
(𝑁 / 2) ∈
ℤ) | 
| 13 |   | nnz 9345 | 
. . . . . 6
⊢ (((𝑁 + 1) / 2) ∈ ℕ →
((𝑁 + 1) / 2) ∈
ℤ) | 
| 14 | 12, 13 | orim12i 760 | 
. . . . 5
⊢ (((𝑁 / 2) ∈ ℕ ∨
((𝑁 + 1) / 2) ∈
ℕ) → ((𝑁 / 2)
∈ ℤ ∨ ((𝑁 +
1) / 2) ∈ ℤ)) | 
| 15 | 11, 14 | syl 14 | 
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 16 | 15 | adantl 277 | 
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 17 |   | nneoor 9428 | 
. . . . 5
⊢ (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ∨
((-𝑁 + 1) / 2) ∈
ℕ)) | 
| 18 | 17 | adantl 277 | 
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ ∨
((-𝑁 + 1) / 2) ∈
ℕ)) | 
| 19 |   | recn 8012 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → 𝑁 ∈
ℂ) | 
| 20 |   | divnegap 8733 | 
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 # 0) → -(𝑁 / 2) = (-𝑁 / 2)) | 
| 21 | 3, 4, 20 | mp3an23 1340 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2)) | 
| 22 | 19, 21 | syl 14 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2)) | 
| 23 | 22 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔
(-𝑁 / 2) ∈
ℕ)) | 
| 24 |   | nnnegz 9329 | 
. . . . . . . 8
⊢ (-(𝑁 / 2) ∈ ℕ →
--(𝑁 / 2) ∈
ℤ) | 
| 25 | 23, 24 | biimtrrdi 164 | 
. . . . . . 7
⊢ (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ →
--(𝑁 / 2) ∈
ℤ)) | 
| 26 | 19 | halfcld 9236 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → (𝑁 / 2) ∈
ℂ) | 
| 27 | 26 | negnegd 8328 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2)) | 
| 28 | 27 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔
(𝑁 / 2) ∈
ℤ)) | 
| 29 | 25, 28 | sylibd 149 | 
. . . . . 6
⊢ (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ →
(𝑁 / 2) ∈
ℤ)) | 
| 30 |   | nnz 9345 | 
. . . . . . 7
⊢ (((-𝑁 + 1) / 2) ∈ ℕ →
((-𝑁 + 1) / 2) ∈
ℤ) | 
| 31 |   | peano2zm 9364 | 
. . . . . . . . . 10
⊢ (((-𝑁 + 1) / 2) ∈ ℤ →
(((-𝑁 + 1) / 2) − 1)
∈ ℤ) | 
| 32 |   | ax-1cn 7972 | 
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ | 
| 33 | 32, 3 | negsubdi2i 8312 | 
. . . . . . . . . . . . . . . . . 18
⊢ -(1
− 2) = (2 − 1) | 
| 34 |   | 2m1e1 9108 | 
. . . . . . . . . . . . . . . . . 18
⊢ (2
− 1) = 1 | 
| 35 | 33, 34 | eqtr2i 2218 | 
. . . . . . . . . . . . . . . . 17
⊢ 1 = -(1
− 2) | 
| 36 | 32, 3 | subcli 8302 | 
. . . . . . . . . . . . . . . . . 18
⊢ (1
− 2) ∈ ℂ | 
| 37 | 32, 36 | negcon2i 8309 | 
. . . . . . . . . . . . . . . . 17
⊢ (1 = -(1
− 2) ↔ (1 − 2) = -1) | 
| 38 | 35, 37 | mpbi 145 | 
. . . . . . . . . . . . . . . 16
⊢ (1
− 2) = -1 | 
| 39 | 38 | oveq2i 5933 | 
. . . . . . . . . . . . . . 15
⊢ (-𝑁 + (1 − 2)) = (-𝑁 + -1) | 
| 40 |   | negcl 8226 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℂ → -𝑁 ∈
ℂ) | 
| 41 |   | addsubass 8236 | 
. . . . . . . . . . . . . . . . 17
⊢ ((-𝑁 ∈ ℂ ∧ 1 ∈
ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2))) | 
| 42 | 32, 3, 41 | mp3an23 1340 | 
. . . . . . . . . . . . . . . 16
⊢ (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 −
2))) | 
| 43 | 40, 42 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 −
2))) | 
| 44 |   | negdi 8283 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝑁 + 1) =
(-𝑁 + -1)) | 
| 45 | 32, 44 | mpan2 425 | 
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1)) | 
| 46 | 39, 43, 45 | 3eqtr4a 2255 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1)) | 
| 47 | 46 | oveq1d 5937 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2)) | 
| 48 |   | 2div2e1 9123 | 
. . . . . . . . . . . . . . . 16
⊢ (2 / 2) =
1 | 
| 49 | 48 | eqcomi 2200 | 
. . . . . . . . . . . . . . 15
⊢ 1 = (2 /
2) | 
| 50 | 49 | oveq2i 5933 | 
. . . . . . . . . . . . . 14
⊢ (((-𝑁 + 1) / 2) − 1) =
(((-𝑁 + 1) / 2) − (2
/ 2)) | 
| 51 |   | peano2cn 8161 | 
. . . . . . . . . . . . . . . 16
⊢ (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈
ℂ) | 
| 52 | 40, 51 | syl 14 | 
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → (-𝑁 + 1) ∈
ℂ) | 
| 53 | 3, 4 | pm3.2i 272 | 
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℂ ∧ 2 # 0) | 
| 54 |   | divsubdirap 8735 | 
. . . . . . . . . . . . . . . 16
⊢ (((-𝑁 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((-𝑁 + 1) − 2) / 2) =
(((-𝑁 + 1) / 2) − (2
/ 2))) | 
| 55 | 3, 53, 54 | mp3an23 1340 | 
. . . . . . . . . . . . . . 15
⊢ ((-𝑁 + 1) ∈ ℂ →
(((-𝑁 + 1) − 2) / 2)
= (((-𝑁 + 1) / 2) −
(2 / 2))) | 
| 56 | 52, 55 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) =
(((-𝑁 + 1) / 2) − (2
/ 2))) | 
| 57 | 50, 56 | eqtr4id 2248 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) =
(((-𝑁 + 1) − 2) /
2)) | 
| 58 |   | peano2cn 8161 | 
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) | 
| 59 |   | divnegap 8733 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑁 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 # 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) | 
| 60 | 3, 4, 59 | mp3an23 1340 | 
. . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈ ℂ →
-((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) | 
| 61 | 58, 60 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) | 
| 62 | 47, 57, 61 | 3eqtr4d 2239 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2)) | 
| 63 | 19, 62 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2)) | 
| 64 | 63 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ →
((((-𝑁 + 1) / 2) − 1)
∈ ℤ ↔ -((𝑁
+ 1) / 2) ∈ ℤ)) | 
| 65 | 31, 64 | imbitrid 154 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
-((𝑁 + 1) / 2) ∈
ℤ)) | 
| 66 |   | znegcl 9357 | 
. . . . . . . . 9
⊢ (-((𝑁 + 1) / 2) ∈ ℤ →
--((𝑁 + 1) / 2) ∈
ℤ) | 
| 67 | 65, 66 | syl6 33 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
--((𝑁 + 1) / 2) ∈
ℤ)) | 
| 68 |   | peano2re 8162 | 
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) | 
| 69 | 68 | recnd 8055 | 
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℂ) | 
| 70 | 69 | halfcld 9236 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈
ℂ) | 
| 71 | 70 | negnegd 8328 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2)) | 
| 72 | 71 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℝ →
(--((𝑁 + 1) / 2) ∈
ℤ ↔ ((𝑁 + 1) /
2) ∈ ℤ)) | 
| 73 | 67, 72 | sylibd 149 | 
. . . . . . 7
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 74 | 30, 73 | syl5 32 | 
. . . . . 6
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ →
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 75 | 29, 74 | orim12d 787 | 
. . . . 5
⊢ (𝑁 ∈ ℝ → (((-𝑁 / 2) ∈ ℕ ∨
((-𝑁 + 1) / 2) ∈
ℕ) → ((𝑁 / 2)
∈ ℤ ∨ ((𝑁 +
1) / 2) ∈ ℤ))) | 
| 76 | 75 | adantr 276 | 
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) →
(((-𝑁 / 2) ∈ ℕ
∨ ((-𝑁 + 1) / 2) ∈
ℕ) → ((𝑁 / 2)
∈ ℤ ∨ ((𝑁 +
1) / 2) ∈ ℤ))) | 
| 77 | 18, 76 | mpd 13 | 
. . 3
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) | 
| 78 | 10, 16, 77 | 3jaodan 1317 | 
. 2
⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) | 
| 79 | 1, 78 | sylbi 121 | 
1
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) |