ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo GIF version

Theorem zeo 9317
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 9214 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 5860 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 8949 . . . . . . . 8 2 ∈ ℂ
4 2ap0 8971 . . . . . . . 8 2 # 0
53, 4div0api 8663 . . . . . . 7 (0 / 2) = 0
6 0z 9223 . . . . . . 7 0 ∈ ℤ
75, 6eqeltri 2243 . . . . . 6 (0 / 2) ∈ ℤ
82, 7eqeltrdi 2261 . . . . 5 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98orcd 728 . . . 4 (𝑁 = 0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 275 . . 3 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
11 nneoor 9314 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
12 nnz 9231 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
13 nnz 9231 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1412, 13orim12i 754 . . . . 5 (((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1511, 14syl 14 . . . 4 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1615adantl 275 . . 3 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
17 nneoor 9314 . . . . 5 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ))
1817adantl 275 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ))
19 recn 7907 . . . . . . . . . 10 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divnegap 8623 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1324 . . . . . . . . . 10 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 14 . . . . . . . . 9 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2239 . . . . . . . 8 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 9215 . . . . . . . 8 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24syl6bir 163 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 9122 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 8221 . . . . . . . 8 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2239 . . . . . . 7 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 148 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
30 nnz 9231 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
31 peano2zm 9250 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
32 ax-1cn 7867 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3332, 3negsubdi2i 8205 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
34 2m1e1 8996 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
3533, 34eqtr2i 2192 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
3632, 3subcli 8195 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
3732, 36negcon2i 8202 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
3835, 37mpbi 144 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
3938oveq2i 5864 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
40 negcl 8119 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
41 addsubass 8129 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4232, 3, 41mp3an23 1324 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4340, 42syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
44 negdi 8176 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
4532, 44mpan2 423 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
4639, 43, 453eqtr4a 2229 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
4746oveq1d 5868 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
48 2div2e1 9010 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
4948eqcomi 2174 . . . . . . . . . . . . . . 15 1 = (2 / 2)
5049oveq2i 5864 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
51 peano2cn 8054 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
5240, 51syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
533, 4pm3.2i 270 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 # 0)
54 divsubdirap 8625 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
553, 53, 54mp3an23 1324 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
5652, 55syl 14 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
5750, 56eqtr4id 2222 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
58 peano2cn 8054 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
59 divnegap 8623 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
603, 4, 59mp3an23 1324 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6158, 60syl 14 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6247, 57, 613eqtr4d 2213 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6319, 62syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6463eleq1d 2239 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
6531, 64syl5ib 153 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
66 znegcl 9243 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
6765, 66syl6 33 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
68 peano2re 8055 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6968recnd 7948 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7069halfcld 9122 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7170negnegd 8221 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7271eleq1d 2239 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7367, 72sylibd 148 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7430, 73syl5 32 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
7529, 74orim12d 781 . . . . 5 (𝑁 ∈ ℝ → (((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)))
7675adantr 274 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)))
7718, 76mpd 13 . . 3 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
7810, 16, 773jaodan 1301 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
791, 78sylbi 120 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703  w3o 972   = wceq 1348  wcel 2141   class class class wbr 3989  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777  cmin 8090  -cneg 8091   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213
This theorem is referenced by:  zeo2  9318  zeo3  11827  mulsucdiv2z  11844  abssinper  13561
  Copyright terms: Public domain W3C validator