Proof of Theorem zeo
| Step | Hyp | Ref
| Expression |
| 1 | | elz 9345 |
. 2
⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| 2 | | oveq1 5932 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑁 / 2) = (0 / 2)) |
| 3 | | 2cn 9078 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
| 4 | | 2ap0 9100 |
. . . . . . . 8
⊢ 2 #
0 |
| 5 | 3, 4 | div0api 8790 |
. . . . . . 7
⊢ (0 / 2) =
0 |
| 6 | | 0z 9354 |
. . . . . . 7
⊢ 0 ∈
ℤ |
| 7 | 5, 6 | eqeltri 2269 |
. . . . . 6
⊢ (0 / 2)
∈ ℤ |
| 8 | 2, 7 | eqeltrdi 2287 |
. . . . 5
⊢ (𝑁 = 0 → (𝑁 / 2) ∈ ℤ) |
| 9 | 8 | orcd 734 |
. . . 4
⊢ (𝑁 = 0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) |
| 10 | 9 | adantl 277 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) |
| 11 | | nneoor 9445 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨
((𝑁 + 1) / 2) ∈
ℕ)) |
| 12 | | nnz 9362 |
. . . . . 6
⊢ ((𝑁 / 2) ∈ ℕ →
(𝑁 / 2) ∈
ℤ) |
| 13 | | nnz 9362 |
. . . . . 6
⊢ (((𝑁 + 1) / 2) ∈ ℕ →
((𝑁 + 1) / 2) ∈
ℤ) |
| 14 | 12, 13 | orim12i 760 |
. . . . 5
⊢ (((𝑁 / 2) ∈ ℕ ∨
((𝑁 + 1) / 2) ∈
ℕ) → ((𝑁 / 2)
∈ ℤ ∨ ((𝑁 +
1) / 2) ∈ ℤ)) |
| 15 | 11, 14 | syl 14 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) |
| 16 | 15 | adantl 277 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) |
| 17 | | nneoor 9445 |
. . . . 5
⊢ (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ∨
((-𝑁 + 1) / 2) ∈
ℕ)) |
| 18 | 17 | adantl 277 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ ∨
((-𝑁 + 1) / 2) ∈
ℕ)) |
| 19 | | recn 8029 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → 𝑁 ∈
ℂ) |
| 20 | | divnegap 8750 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 # 0) → -(𝑁 / 2) = (-𝑁 / 2)) |
| 21 | 3, 4, 20 | mp3an23 1340 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2)) |
| 22 | 19, 21 | syl 14 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2)) |
| 23 | 22 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔
(-𝑁 / 2) ∈
ℕ)) |
| 24 | | nnnegz 9346 |
. . . . . . . 8
⊢ (-(𝑁 / 2) ∈ ℕ →
--(𝑁 / 2) ∈
ℤ) |
| 25 | 23, 24 | biimtrrdi 164 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ →
--(𝑁 / 2) ∈
ℤ)) |
| 26 | 19 | halfcld 9253 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → (𝑁 / 2) ∈
ℂ) |
| 27 | 26 | negnegd 8345 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2)) |
| 28 | 27 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔
(𝑁 / 2) ∈
ℤ)) |
| 29 | 25, 28 | sylibd 149 |
. . . . . 6
⊢ (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ →
(𝑁 / 2) ∈
ℤ)) |
| 30 | | nnz 9362 |
. . . . . . 7
⊢ (((-𝑁 + 1) / 2) ∈ ℕ →
((-𝑁 + 1) / 2) ∈
ℤ) |
| 31 | | peano2zm 9381 |
. . . . . . . . . 10
⊢ (((-𝑁 + 1) / 2) ∈ ℤ →
(((-𝑁 + 1) / 2) − 1)
∈ ℤ) |
| 32 | | ax-1cn 7989 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℂ |
| 33 | 32, 3 | negsubdi2i 8329 |
. . . . . . . . . . . . . . . . . 18
⊢ -(1
− 2) = (2 − 1) |
| 34 | | 2m1e1 9125 |
. . . . . . . . . . . . . . . . . 18
⊢ (2
− 1) = 1 |
| 35 | 33, 34 | eqtr2i 2218 |
. . . . . . . . . . . . . . . . 17
⊢ 1 = -(1
− 2) |
| 36 | 32, 3 | subcli 8319 |
. . . . . . . . . . . . . . . . . 18
⊢ (1
− 2) ∈ ℂ |
| 37 | 32, 36 | negcon2i 8326 |
. . . . . . . . . . . . . . . . 17
⊢ (1 = -(1
− 2) ↔ (1 − 2) = -1) |
| 38 | 35, 37 | mpbi 145 |
. . . . . . . . . . . . . . . 16
⊢ (1
− 2) = -1 |
| 39 | 38 | oveq2i 5936 |
. . . . . . . . . . . . . . 15
⊢ (-𝑁 + (1 − 2)) = (-𝑁 + -1) |
| 40 | | negcl 8243 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℂ → -𝑁 ∈
ℂ) |
| 41 | | addsubass 8253 |
. . . . . . . . . . . . . . . . 17
⊢ ((-𝑁 ∈ ℂ ∧ 1 ∈
ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2))) |
| 42 | 32, 3, 41 | mp3an23 1340 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 −
2))) |
| 43 | 40, 42 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 −
2))) |
| 44 | | negdi 8300 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → -(𝑁 + 1) =
(-𝑁 + -1)) |
| 45 | 32, 44 | mpan2 425 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1)) |
| 46 | 39, 43, 45 | 3eqtr4a 2255 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1)) |
| 47 | 46 | oveq1d 5940 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2)) |
| 48 | | 2div2e1 9140 |
. . . . . . . . . . . . . . . 16
⊢ (2 / 2) =
1 |
| 49 | 48 | eqcomi 2200 |
. . . . . . . . . . . . . . 15
⊢ 1 = (2 /
2) |
| 50 | 49 | oveq2i 5936 |
. . . . . . . . . . . . . 14
⊢ (((-𝑁 + 1) / 2) − 1) =
(((-𝑁 + 1) / 2) − (2
/ 2)) |
| 51 | | peano2cn 8178 |
. . . . . . . . . . . . . . . 16
⊢ (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈
ℂ) |
| 52 | 40, 51 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℂ → (-𝑁 + 1) ∈
ℂ) |
| 53 | 3, 4 | pm3.2i 272 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
ℂ ∧ 2 # 0) |
| 54 | | divsubdirap 8752 |
. . . . . . . . . . . . . . . 16
⊢ (((-𝑁 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((-𝑁 + 1) − 2) / 2) =
(((-𝑁 + 1) / 2) − (2
/ 2))) |
| 55 | 3, 53, 54 | mp3an23 1340 |
. . . . . . . . . . . . . . 15
⊢ ((-𝑁 + 1) ∈ ℂ →
(((-𝑁 + 1) − 2) / 2)
= (((-𝑁 + 1) / 2) −
(2 / 2))) |
| 56 | 52, 55 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) =
(((-𝑁 + 1) / 2) − (2
/ 2))) |
| 57 | 50, 56 | eqtr4id 2248 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) =
(((-𝑁 + 1) − 2) /
2)) |
| 58 | | peano2cn 8178 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℂ → (𝑁 + 1) ∈
ℂ) |
| 59 | | divnegap 8750 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 + 1) ∈ ℂ ∧ 2
∈ ℂ ∧ 2 # 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) |
| 60 | 3, 4, 59 | mp3an23 1340 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈ ℂ →
-((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) |
| 61 | 58, 60 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2)) |
| 62 | 47, 57, 61 | 3eqtr4d 2239 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2)) |
| 63 | 19, 62 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2)) |
| 64 | 63 | eleq1d 2265 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ →
((((-𝑁 + 1) / 2) − 1)
∈ ℤ ↔ -((𝑁
+ 1) / 2) ∈ ℤ)) |
| 65 | 31, 64 | imbitrid 154 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
-((𝑁 + 1) / 2) ∈
ℤ)) |
| 66 | | znegcl 9374 |
. . . . . . . . 9
⊢ (-((𝑁 + 1) / 2) ∈ ℤ →
--((𝑁 + 1) / 2) ∈
ℤ) |
| 67 | 65, 66 | syl6 33 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
--((𝑁 + 1) / 2) ∈
ℤ)) |
| 68 | | peano2re 8179 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
| 69 | 68 | recnd 8072 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℂ) |
| 70 | 69 | halfcld 9253 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈
ℂ) |
| 71 | 70 | negnegd 8345 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2)) |
| 72 | 71 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑁 ∈ ℝ →
(--((𝑁 + 1) / 2) ∈
ℤ ↔ ((𝑁 + 1) /
2) ∈ ℤ)) |
| 73 | 67, 72 | sylibd 149 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ →
((𝑁 + 1) / 2) ∈
ℤ)) |
| 74 | 30, 73 | syl5 32 |
. . . . . 6
⊢ (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ →
((𝑁 + 1) / 2) ∈
ℤ)) |
| 75 | 29, 74 | orim12d 787 |
. . . . 5
⊢ (𝑁 ∈ ℝ → (((-𝑁 / 2) ∈ ℕ ∨
((-𝑁 + 1) / 2) ∈
ℕ) → ((𝑁 / 2)
∈ ℤ ∨ ((𝑁 +
1) / 2) ∈ ℤ))) |
| 76 | 75 | adantr 276 |
. . . 4
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) →
(((-𝑁 / 2) ∈ ℕ
∨ ((-𝑁 + 1) / 2) ∈
ℕ) → ((𝑁 / 2)
∈ ℤ ∨ ((𝑁 +
1) / 2) ∈ ℤ))) |
| 77 | 18, 76 | mpd 13 |
. . 3
⊢ ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) |
| 78 | 10, 16, 77 | 3jaodan 1317 |
. 2
⊢ ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈
ℤ)) |
| 79 | 1, 78 | sylbi 121 |
1
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨
((𝑁 + 1) / 2) ∈
ℤ)) |