ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo GIF version

Theorem zeo 9296
Description: An integer is even or odd. (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
zeo (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))

Proof of Theorem zeo
StepHypRef Expression
1 elz 9193 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
2 oveq1 5849 . . . . . 6 (𝑁 = 0 → (𝑁 / 2) = (0 / 2))
3 2cn 8928 . . . . . . . 8 2 ∈ ℂ
4 2ap0 8950 . . . . . . . 8 2 # 0
53, 4div0api 8642 . . . . . . 7 (0 / 2) = 0
6 0z 9202 . . . . . . 7 0 ∈ ℤ
75, 6eqeltri 2239 . . . . . 6 (0 / 2) ∈ ℤ
82, 7eqeltrdi 2257 . . . . 5 (𝑁 = 0 → (𝑁 / 2) ∈ ℤ)
98orcd 723 . . . 4 (𝑁 = 0 → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
109adantl 275 . . 3 ((𝑁 ∈ ℝ ∧ 𝑁 = 0) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
11 nneoor 9293 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
12 nnz 9210 . . . . . 6 ((𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ)
13 nnz 9210 . . . . . 6 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
1412, 13orim12i 749 . . . . 5 (((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1511, 14syl 14 . . . 4 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
1615adantl 275 . . 3 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
17 nneoor 9293 . . . . 5 (-𝑁 ∈ ℕ → ((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ))
1817adantl 275 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ))
19 recn 7886 . . . . . . . . . 10 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
20 divnegap 8602 . . . . . . . . . . 11 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -(𝑁 / 2) = (-𝑁 / 2))
213, 4, 20mp3an23 1319 . . . . . . . . . 10 (𝑁 ∈ ℂ → -(𝑁 / 2) = (-𝑁 / 2))
2219, 21syl 14 . . . . . . . . 9 (𝑁 ∈ ℝ → -(𝑁 / 2) = (-𝑁 / 2))
2322eleq1d 2235 . . . . . . . 8 (𝑁 ∈ ℝ → (-(𝑁 / 2) ∈ ℕ ↔ (-𝑁 / 2) ∈ ℕ))
24 nnnegz 9194 . . . . . . . 8 (-(𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ)
2523, 24syl6bir 163 . . . . . . 7 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → --(𝑁 / 2) ∈ ℤ))
2619halfcld 9101 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℂ)
2726negnegd 8200 . . . . . . . 8 (𝑁 ∈ ℝ → --(𝑁 / 2) = (𝑁 / 2))
2827eleq1d 2235 . . . . . . 7 (𝑁 ∈ ℝ → (--(𝑁 / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
2925, 28sylibd 148 . . . . . 6 (𝑁 ∈ ℝ → ((-𝑁 / 2) ∈ ℕ → (𝑁 / 2) ∈ ℤ))
30 nnz 9210 . . . . . . 7 (((-𝑁 + 1) / 2) ∈ ℕ → ((-𝑁 + 1) / 2) ∈ ℤ)
31 peano2zm 9229 . . . . . . . . . 10 (((-𝑁 + 1) / 2) ∈ ℤ → (((-𝑁 + 1) / 2) − 1) ∈ ℤ)
32 ax-1cn 7846 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
3332, 3negsubdi2i 8184 . . . . . . . . . . . . . . . . . 18 -(1 − 2) = (2 − 1)
34 2m1e1 8975 . . . . . . . . . . . . . . . . . 18 (2 − 1) = 1
3533, 34eqtr2i 2187 . . . . . . . . . . . . . . . . 17 1 = -(1 − 2)
3632, 3subcli 8174 . . . . . . . . . . . . . . . . . 18 (1 − 2) ∈ ℂ
3732, 36negcon2i 8181 . . . . . . . . . . . . . . . . 17 (1 = -(1 − 2) ↔ (1 − 2) = -1)
3835, 37mpbi 144 . . . . . . . . . . . . . . . 16 (1 − 2) = -1
3938oveq2i 5853 . . . . . . . . . . . . . . 15 (-𝑁 + (1 − 2)) = (-𝑁 + -1)
40 negcl 8098 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℂ → -𝑁 ∈ ℂ)
41 addsubass 8108 . . . . . . . . . . . . . . . . 17 ((-𝑁 ∈ ℂ ∧ 1 ∈ ℂ ∧ 2 ∈ ℂ) → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4232, 3, 41mp3an23 1319 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
4340, 42syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = (-𝑁 + (1 − 2)))
44 negdi 8155 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝑁 + 1) = (-𝑁 + -1))
4532, 44mpan2 422 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → -(𝑁 + 1) = (-𝑁 + -1))
4639, 43, 453eqtr4a 2225 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((-𝑁 + 1) − 2) = -(𝑁 + 1))
4746oveq1d 5857 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (-(𝑁 + 1) / 2))
48 2div2e1 8989 . . . . . . . . . . . . . . . 16 (2 / 2) = 1
4948eqcomi 2169 . . . . . . . . . . . . . . 15 1 = (2 / 2)
5049oveq2i 5853 . . . . . . . . . . . . . 14 (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) / 2) − (2 / 2))
51 peano2cn 8033 . . . . . . . . . . . . . . . 16 (-𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
5240, 51syl 14 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℂ → (-𝑁 + 1) ∈ ℂ)
533, 4pm3.2i 270 . . . . . . . . . . . . . . . 16 (2 ∈ ℂ ∧ 2 # 0)
54 divsubdirap 8604 . . . . . . . . . . . . . . . 16 (((-𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
553, 53, 54mp3an23 1319 . . . . . . . . . . . . . . 15 ((-𝑁 + 1) ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
5652, 55syl 14 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (((-𝑁 + 1) − 2) / 2) = (((-𝑁 + 1) / 2) − (2 / 2)))
5750, 56eqtr4id 2218 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = (((-𝑁 + 1) − 2) / 2))
58 peano2cn 8033 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
59 divnegap 8602 . . . . . . . . . . . . . . 15 (((𝑁 + 1) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 # 0) → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
603, 4, 59mp3an23 1319 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6158, 60syl 14 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → -((𝑁 + 1) / 2) = (-(𝑁 + 1) / 2))
6247, 57, 613eqtr4d 2208 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6319, 62syl 14 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) − 1) = -((𝑁 + 1) / 2))
6463eleq1d 2235 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((((-𝑁 + 1) / 2) − 1) ∈ ℤ ↔ -((𝑁 + 1) / 2) ∈ ℤ))
6531, 64syl5ib 153 . . . . . . . . 9 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → -((𝑁 + 1) / 2) ∈ ℤ))
66 znegcl 9222 . . . . . . . . 9 (-((𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ)
6765, 66syl6 33 . . . . . . . 8 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → --((𝑁 + 1) / 2) ∈ ℤ))
68 peano2re 8034 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
6968recnd 7927 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℂ)
7069halfcld 9101 . . . . . . . . . 10 (𝑁 ∈ ℝ → ((𝑁 + 1) / 2) ∈ ℂ)
7170negnegd 8200 . . . . . . . . 9 (𝑁 ∈ ℝ → --((𝑁 + 1) / 2) = ((𝑁 + 1) / 2))
7271eleq1d 2235 . . . . . . . 8 (𝑁 ∈ ℝ → (--((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℤ))
7367, 72sylibd 148 . . . . . . 7 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℤ))
7430, 73syl5 32 . . . . . 6 (𝑁 ∈ ℝ → (((-𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ))
7529, 74orim12d 776 . . . . 5 (𝑁 ∈ ℝ → (((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)))
7675adantr 274 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (((-𝑁 / 2) ∈ ℕ ∨ ((-𝑁 + 1) / 2) ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)))
7718, 76mpd 13 . . 3 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
7810, 16, 773jaodan 1296 . 2 ((𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)) → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
791, 78sylbi 120 1 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 967   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756  cmin 8069  -cneg 8070   # cap 8479   / cdiv 8568  cn 8857  2c2 8908  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192
This theorem is referenced by:  zeo2  9297  zeo3  11805  mulsucdiv2z  11822  abssinper  13407
  Copyright terms: Public domain W3C validator