![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version |
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | jaodan 769 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
6 | df-3or 944 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
7 | 5, 6 | sylib 121 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
8 | 3, 4, 7 | mpjaodan 770 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 680 ∨ w3o 942 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 |
This theorem depends on definitions: df-bi 116 df-3or 944 |
This theorem is referenced by: wetriext 4449 nntri3 6345 nntri2or2 6346 nntr2 6351 tridc 6744 caucvgprlemnkj 7416 caucvgprlemnbj 7417 caucvgprprlemnkj 7442 caucvgprprlemnbj 7443 caucvgsr 7538 npnflt 9485 nmnfgt 9488 xleadd1a 9543 xltadd1 9546 xlt2add 9550 xsubge0 9551 xleaddadd 9557 addmodlteq 10058 iseqf1olemkle 10144 hashfiv01gt1 10415 xrmaxltsup 10913 xrmaxadd 10916 xrbdtri 10931 cvgratz 11187 zdvdsdc 11356 divalglemeunn 11460 divalglemex 11461 divalglemeuneg 11462 divalg 11463 znege1 11695 ennnfonelemk 11752 isxmet2d 12331 nninfalllemn 12883 trilpolemres 12916 |
Copyright terms: Public domain | W3C validator |