ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpjao3dan GIF version

Theorem mpjao3dan 1286
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
mpjao3dan.1 ((𝜑𝜓) → 𝜒)
mpjao3dan.2 ((𝜑𝜃) → 𝜒)
mpjao3dan.3 ((𝜑𝜏) → 𝜒)
mpjao3dan.4 (𝜑 → (𝜓𝜃𝜏))
Assertion
Ref Expression
mpjao3dan (𝜑𝜒)

Proof of Theorem mpjao3dan
StepHypRef Expression
1 mpjao3dan.1 . . 3 ((𝜑𝜓) → 𝜒)
2 mpjao3dan.2 . . 3 ((𝜑𝜃) → 𝜒)
31, 2jaodan 787 . 2 ((𝜑 ∧ (𝜓𝜃)) → 𝜒)
4 mpjao3dan.3 . 2 ((𝜑𝜏) → 𝜒)
5 mpjao3dan.4 . . 3 (𝜑 → (𝜓𝜃𝜏))
6 df-3or 964 . . 3 ((𝜓𝜃𝜏) ↔ ((𝜓𝜃) ∨ 𝜏))
75, 6sylib 121 . 2 (𝜑 → ((𝜓𝜃) ∨ 𝜏))
83, 4, 7mpjaodan 788 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3o 962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116  df-3or 964
This theorem is referenced by:  wetriext  4530  nntri3  6433  nntri2or2  6434  nntr2  6439  tridc  6833  exmidontriimlem2  7136  caucvgprlemnkj  7565  caucvgprlemnbj  7566  caucvgprprlemnkj  7591  caucvgprprlemnbj  7592  caucvgsr  7701  npnflt  9697  nmnfgt  9700  xleadd1a  9755  xltadd1  9758  xlt2add  9762  xsubge0  9763  xleaddadd  9769  addmodlteq  10275  iseqf1olemkle  10361  hashfiv01gt1  10633  xrmaxltsup  11132  xrmaxadd  11135  xrbdtri  11150  cvgratz  11406  zdvdsdc  11681  divalglemeunn  11785  divalglemex  11786  divalglemeuneg  11787  divalg  11788  znege1  12024  ennnfonelemk  12088  isxmet2d  12695  nninfalllemn  13528  trilpolemres  13562  trirec0  13564
  Copyright terms: Public domain W3C validator