ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpjao3dan GIF version

Theorem mpjao3dan 1320
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
mpjao3dan.1 ((𝜑𝜓) → 𝜒)
mpjao3dan.2 ((𝜑𝜃) → 𝜒)
mpjao3dan.3 ((𝜑𝜏) → 𝜒)
mpjao3dan.4 (𝜑 → (𝜓𝜃𝜏))
Assertion
Ref Expression
mpjao3dan (𝜑𝜒)

Proof of Theorem mpjao3dan
StepHypRef Expression
1 mpjao3dan.1 . . 3 ((𝜑𝜓) → 𝜒)
2 mpjao3dan.2 . . 3 ((𝜑𝜃) → 𝜒)
31, 2jaodan 799 . 2 ((𝜑 ∧ (𝜓𝜃)) → 𝜒)
4 mpjao3dan.3 . 2 ((𝜑𝜏) → 𝜒)
5 mpjao3dan.4 . . 3 (𝜑 → (𝜓𝜃𝜏))
6 df-3or 982 . . 3 ((𝜓𝜃𝜏) ↔ ((𝜓𝜃) ∨ 𝜏))
75, 6sylib 122 . 2 (𝜑 → ((𝜓𝜃) ∨ 𝜏))
83, 4, 7mpjaodan 800 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  w3o 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117  df-3or 982
This theorem is referenced by:  wetriext  4630  nntri3  6593  nntri2or2  6594  nntr2  6599  tridc  7008  nnnninfeq  7242  exmidontriimlem2  7347  caucvgprlemnkj  7792  caucvgprlemnbj  7793  caucvgprprlemnkj  7818  caucvgprprlemnbj  7819  caucvgsr  7928  npnflt  9950  nmnfgt  9953  xleadd1a  10008  xltadd1  10011  xlt2add  10015  xsubge0  10016  xleaddadd  10022  addmodlteq  10556  iseqf1olemkle  10655  hashfiv01gt1  10940  iswrdiz  11014  xrmaxltsup  11619  xrmaxadd  11622  xrbdtri  11637  cvgratz  11893  zdvdsdc  12173  divalglemeunn  12282  divalglemex  12283  divalglemeuneg  12284  divalg  12285  znege1  12550  ennnfonelemk  12821  isxmet2d  14870  trilpolemres  16096  trirec0  16098
  Copyright terms: Public domain W3C validator