![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version |
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | jaodan 798 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
6 | df-3or 981 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
7 | 5, 6 | sylib 122 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
8 | 3, 4, 7 | mpjaodan 799 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-3or 981 |
This theorem is referenced by: wetriext 4609 nntri3 6550 nntri2or2 6551 nntr2 6556 tridc 6955 nnnninfeq 7187 exmidontriimlem2 7282 caucvgprlemnkj 7726 caucvgprlemnbj 7727 caucvgprprlemnkj 7752 caucvgprprlemnbj 7753 caucvgsr 7862 npnflt 9881 nmnfgt 9884 xleadd1a 9939 xltadd1 9942 xlt2add 9946 xsubge0 9947 xleaddadd 9953 addmodlteq 10469 iseqf1olemkle 10568 hashfiv01gt1 10853 iswrdiz 10921 xrmaxltsup 11401 xrmaxadd 11404 xrbdtri 11419 cvgratz 11675 zdvdsdc 11955 divalglemeunn 12062 divalglemex 12063 divalglemeuneg 12064 divalg 12065 znege1 12316 ennnfonelemk 12557 isxmet2d 14516 trilpolemres 15532 trirec0 15534 |
Copyright terms: Public domain | W3C validator |