| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version | ||
| Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | jaodan 799 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| 4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 6 | df-3or 982 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
| 7 | 5, 6 | sylib 122 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
| 8 | 3, 4, 7 | mpjaodan 800 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 ∨ w3o 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-3or 982 |
| This theorem is referenced by: wetriext 4630 nntri3 6593 nntri2or2 6594 nntr2 6599 tridc 7008 nnnninfeq 7242 exmidontriimlem2 7347 caucvgprlemnkj 7792 caucvgprlemnbj 7793 caucvgprprlemnkj 7818 caucvgprprlemnbj 7819 caucvgsr 7928 npnflt 9950 nmnfgt 9953 xleadd1a 10008 xltadd1 10011 xlt2add 10015 xsubge0 10016 xleaddadd 10022 addmodlteq 10556 iseqf1olemkle 10655 hashfiv01gt1 10940 iswrdiz 11014 xrmaxltsup 11619 xrmaxadd 11622 xrbdtri 11637 cvgratz 11893 zdvdsdc 12173 divalglemeunn 12282 divalglemex 12283 divalglemeuneg 12284 divalg 12285 znege1 12550 ennnfonelemk 12821 isxmet2d 14870 trilpolemres 16096 trirec0 16098 |
| Copyright terms: Public domain | W3C validator |