ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpjao3dan GIF version

Theorem mpjao3dan 1318
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
mpjao3dan.1 ((𝜑𝜓) → 𝜒)
mpjao3dan.2 ((𝜑𝜃) → 𝜒)
mpjao3dan.3 ((𝜑𝜏) → 𝜒)
mpjao3dan.4 (𝜑 → (𝜓𝜃𝜏))
Assertion
Ref Expression
mpjao3dan (𝜑𝜒)

Proof of Theorem mpjao3dan
StepHypRef Expression
1 mpjao3dan.1 . . 3 ((𝜑𝜓) → 𝜒)
2 mpjao3dan.2 . . 3 ((𝜑𝜃) → 𝜒)
31, 2jaodan 798 . 2 ((𝜑 ∧ (𝜓𝜃)) → 𝜒)
4 mpjao3dan.3 . 2 ((𝜑𝜏) → 𝜒)
5 mpjao3dan.4 . . 3 (𝜑 → (𝜓𝜃𝜏))
6 df-3or 981 . . 3 ((𝜓𝜃𝜏) ↔ ((𝜓𝜃) ∨ 𝜏))
75, 6sylib 122 . 2 (𝜑 → ((𝜓𝜃) ∨ 𝜏))
83, 4, 7mpjaodan 799 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3o 979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117  df-3or 981
This theorem is referenced by:  wetriext  4613  nntri3  6555  nntri2or2  6556  nntr2  6561  tridc  6960  nnnninfeq  7194  exmidontriimlem2  7289  caucvgprlemnkj  7733  caucvgprlemnbj  7734  caucvgprprlemnkj  7759  caucvgprprlemnbj  7760  caucvgsr  7869  npnflt  9890  nmnfgt  9893  xleadd1a  9948  xltadd1  9951  xlt2add  9955  xsubge0  9956  xleaddadd  9962  addmodlteq  10490  iseqf1olemkle  10589  hashfiv01gt1  10874  iswrdiz  10942  xrmaxltsup  11423  xrmaxadd  11426  xrbdtri  11441  cvgratz  11697  zdvdsdc  11977  divalglemeunn  12086  divalglemex  12087  divalglemeuneg  12088  divalg  12089  znege1  12346  ennnfonelemk  12617  isxmet2d  14584  trilpolemres  15686  trirec0  15688
  Copyright terms: Public domain W3C validator