ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpjao3dan GIF version

Theorem mpjao3dan 1266
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
mpjao3dan.1 ((𝜑𝜓) → 𝜒)
mpjao3dan.2 ((𝜑𝜃) → 𝜒)
mpjao3dan.3 ((𝜑𝜏) → 𝜒)
mpjao3dan.4 (𝜑 → (𝜓𝜃𝜏))
Assertion
Ref Expression
mpjao3dan (𝜑𝜒)

Proof of Theorem mpjao3dan
StepHypRef Expression
1 mpjao3dan.1 . . 3 ((𝜑𝜓) → 𝜒)
2 mpjao3dan.2 . . 3 ((𝜑𝜃) → 𝜒)
31, 2jaodan 769 . 2 ((𝜑 ∧ (𝜓𝜃)) → 𝜒)
4 mpjao3dan.3 . 2 ((𝜑𝜏) → 𝜒)
5 mpjao3dan.4 . . 3 (𝜑 → (𝜓𝜃𝜏))
6 df-3or 944 . . 3 ((𝜓𝜃𝜏) ↔ ((𝜓𝜃) ∨ 𝜏))
75, 6sylib 121 . 2 (𝜑 → ((𝜓𝜃) ∨ 𝜏))
83, 4, 7mpjaodan 770 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 680  w3o 942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681
This theorem depends on definitions:  df-bi 116  df-3or 944
This theorem is referenced by:  wetriext  4449  nntri3  6345  nntri2or2  6346  nntr2  6351  tridc  6744  caucvgprlemnkj  7416  caucvgprlemnbj  7417  caucvgprprlemnkj  7442  caucvgprprlemnbj  7443  caucvgsr  7538  npnflt  9485  nmnfgt  9488  xleadd1a  9543  xltadd1  9546  xlt2add  9550  xsubge0  9551  xleaddadd  9557  addmodlteq  10058  iseqf1olemkle  10144  hashfiv01gt1  10415  xrmaxltsup  10913  xrmaxadd  10916  xrbdtri  10931  cvgratz  11187  zdvdsdc  11356  divalglemeunn  11460  divalglemex  11461  divalglemeuneg  11462  divalg  11463  znege1  11695  ennnfonelemk  11752  isxmet2d  12331  nninfalllemn  12883  trilpolemres  12916
  Copyright terms: Public domain W3C validator