![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version |
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | jaodan 798 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
6 | df-3or 981 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
7 | 5, 6 | sylib 122 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
8 | 3, 4, 7 | mpjaodan 799 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 df-3or 981 |
This theorem is referenced by: wetriext 4610 nntri3 6552 nntri2or2 6553 nntr2 6558 tridc 6957 nnnninfeq 7189 exmidontriimlem2 7284 caucvgprlemnkj 7728 caucvgprlemnbj 7729 caucvgprprlemnkj 7754 caucvgprprlemnbj 7755 caucvgsr 7864 npnflt 9884 nmnfgt 9887 xleadd1a 9942 xltadd1 9945 xlt2add 9949 xsubge0 9950 xleaddadd 9956 addmodlteq 10472 iseqf1olemkle 10571 hashfiv01gt1 10856 iswrdiz 10924 xrmaxltsup 11404 xrmaxadd 11407 xrbdtri 11422 cvgratz 11678 zdvdsdc 11958 divalglemeunn 12065 divalglemex 12066 divalglemeuneg 12067 divalg 12068 znege1 12319 ennnfonelemk 12560 isxmet2d 14527 trilpolemres 15602 trirec0 15604 |
Copyright terms: Public domain | W3C validator |