| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version | ||
| Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | jaodan 798 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| 4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 6 | df-3or 981 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
| 7 | 5, 6 | sylib 122 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
| 8 | 3, 4, 7 | mpjaodan 799 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 ∨ w3o 979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-3or 981 |
| This theorem is referenced by: wetriext 4613 nntri3 6555 nntri2or2 6556 nntr2 6561 tridc 6960 nnnninfeq 7194 exmidontriimlem2 7289 caucvgprlemnkj 7733 caucvgprlemnbj 7734 caucvgprprlemnkj 7759 caucvgprprlemnbj 7760 caucvgsr 7869 npnflt 9890 nmnfgt 9893 xleadd1a 9948 xltadd1 9951 xlt2add 9955 xsubge0 9956 xleaddadd 9962 addmodlteq 10490 iseqf1olemkle 10589 hashfiv01gt1 10874 iswrdiz 10942 xrmaxltsup 11423 xrmaxadd 11426 xrbdtri 11441 cvgratz 11697 zdvdsdc 11977 divalglemeunn 12086 divalglemex 12087 divalglemeuneg 12088 divalg 12089 znege1 12346 ennnfonelemk 12617 isxmet2d 14584 trilpolemres 15686 trirec0 15688 |
| Copyright terms: Public domain | W3C validator |