| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version | ||
| Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | jaodan 802 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| 4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 6 | df-3or 1003 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
| 7 | 5, 6 | sylib 122 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
| 8 | 3, 4, 7 | mpjaodan 803 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∨ w3o 1001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 |
| This theorem is referenced by: wetriext 4666 nntri3 6633 nntri2or2 6634 nntr2 6639 tridc 7049 nnnninfeq 7283 exmidontriimlem2 7392 caucvgprlemnkj 7841 caucvgprlemnbj 7842 caucvgprprlemnkj 7867 caucvgprprlemnbj 7868 caucvgsr 7977 npnflt 9999 nmnfgt 10002 xleadd1a 10057 xltadd1 10060 xlt2add 10064 xsubge0 10065 xleaddadd 10071 addmodlteq 10607 iseqf1olemkle 10706 hashfiv01gt1 10991 iswrdiz 11065 xrmaxltsup 11755 xrmaxadd 11758 xrbdtri 11773 cvgratz 12029 zdvdsdc 12309 divalglemeunn 12418 divalglemex 12419 divalglemeuneg 12420 divalg 12421 znege1 12686 ennnfonelemk 12957 isxmet2d 15007 trilpolemres 16341 trirec0 16343 |
| Copyright terms: Public domain | W3C validator |