Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version |
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | jaodan 787 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
6 | df-3or 964 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
7 | 5, 6 | sylib 121 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
8 | 3, 4, 7 | mpjaodan 788 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 ∨ w3o 962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-3or 964 |
This theorem is referenced by: wetriext 4530 nntri3 6433 nntri2or2 6434 nntr2 6439 tridc 6833 exmidontriimlem2 7136 caucvgprlemnkj 7565 caucvgprlemnbj 7566 caucvgprprlemnkj 7591 caucvgprprlemnbj 7592 caucvgsr 7701 npnflt 9697 nmnfgt 9700 xleadd1a 9755 xltadd1 9758 xlt2add 9762 xsubge0 9763 xleaddadd 9769 addmodlteq 10275 iseqf1olemkle 10361 hashfiv01gt1 10633 xrmaxltsup 11132 xrmaxadd 11135 xrbdtri 11150 cvgratz 11406 zdvdsdc 11681 divalglemeunn 11785 divalglemex 11786 divalglemeuneg 11787 divalg 11788 znege1 12024 ennnfonelemk 12088 isxmet2d 12695 nninfalllemn 13528 trilpolemres 13562 trirec0 13564 |
Copyright terms: Public domain | W3C validator |