| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version | ||
| Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
| mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
| mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
| Ref | Expression |
|---|---|
| mpjao3dan | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
| 3 | 1, 2 | jaodan 802 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
| 4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
| 5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
| 6 | df-3or 1003 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
| 7 | 5, 6 | sylib 122 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
| 8 | 3, 4, 7 | mpjaodan 803 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 ∨ w3o 1001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 |
| This theorem is referenced by: wetriext 4669 nntri3 6651 nntri2or2 6652 nntr2 6657 tridc 7069 nnnninfeq 7303 exmidontriimlem2 7412 caucvgprlemnkj 7861 caucvgprlemnbj 7862 caucvgprprlemnkj 7887 caucvgprprlemnbj 7888 caucvgsr 7997 npnflt 10019 nmnfgt 10022 xleadd1a 10077 xltadd1 10080 xlt2add 10084 xsubge0 10085 xleaddadd 10091 addmodlteq 10628 iseqf1olemkle 10727 hashfiv01gt1 11012 iswrdiz 11086 xrmaxltsup 11777 xrmaxadd 11780 xrbdtri 11795 cvgratz 12051 zdvdsdc 12331 divalglemeunn 12440 divalglemex 12441 divalglemeuneg 12442 divalg 12443 znege1 12708 ennnfonelemk 12979 isxmet2d 15030 trilpolemres 16440 trirec0 16442 |
| Copyright terms: Public domain | W3C validator |