![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpjao3dan | GIF version |
Description: Eliminate a 3-way disjunction in a deduction. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
Ref | Expression |
---|---|
mpjao3dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpjao3dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜒) |
mpjao3dan.3 | ⊢ ((𝜑 ∧ 𝜏) → 𝜒) |
mpjao3dan.4 | ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) |
Ref | Expression |
---|---|
mpjao3dan | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpjao3dan.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpjao3dan.2 | . . 3 ⊢ ((𝜑 ∧ 𝜃) → 𝜒) | |
3 | 1, 2 | jaodan 797 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∨ 𝜃)) → 𝜒) |
4 | mpjao3dan.3 | . 2 ⊢ ((𝜑 ∧ 𝜏) → 𝜒) | |
5 | mpjao3dan.4 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜃 ∨ 𝜏)) | |
6 | df-3or 979 | . . 3 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜏)) | |
7 | 5, 6 | sylib 122 | . 2 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ∨ 𝜏)) |
8 | 3, 4, 7 | mpjaodan 798 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 ∨ w3o 977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-3or 979 |
This theorem is referenced by: wetriext 4576 nntri3 6497 nntri2or2 6498 nntr2 6503 tridc 6898 nnnninfeq 7125 exmidontriimlem2 7220 caucvgprlemnkj 7664 caucvgprlemnbj 7665 caucvgprprlemnkj 7690 caucvgprprlemnbj 7691 caucvgsr 7800 npnflt 9814 nmnfgt 9817 xleadd1a 9872 xltadd1 9875 xlt2add 9879 xsubge0 9880 xleaddadd 9886 addmodlteq 10397 iseqf1olemkle 10483 hashfiv01gt1 10761 xrmaxltsup 11265 xrmaxadd 11268 xrbdtri 11283 cvgratz 11539 zdvdsdc 11818 divalglemeunn 11925 divalglemex 11926 divalglemeuneg 11927 divalg 11928 znege1 12177 ennnfonelemk 12400 isxmet2d 13818 trilpolemres 14760 trirec0 14762 |
Copyright terms: Public domain | W3C validator |