ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xltnegi GIF version

Theorem xltnegi 9901
Description: Forward direction of xltneg 9902. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xltnegi ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)

Proof of Theorem xltnegi
StepHypRef Expression
1 elxr 9842 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9842 . . . . . 6 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 ltneg 8481 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
4 rexneg 9896 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 = -𝐵)
5 rexneg 9896 . . . . . . . . . 10 (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴)
64, 5breqan12rd 4046 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝐵 < -𝐴))
73, 6bitr4d 191 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝑒𝐵 < -𝑒𝐴))
87biimpd 144 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
9 xnegeq 9893 . . . . . . . . . . 11 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
10 xnegpnf 9894 . . . . . . . . . . 11 -𝑒+∞ = -∞
119, 10eqtrdi 2242 . . . . . . . . . 10 (𝐵 = +∞ → -𝑒𝐵 = -∞)
1211adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 = -∞)
13 renegcl 8280 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
145, 13eqeltrd 2270 . . . . . . . . . . 11 (𝐴 ∈ ℝ → -𝑒𝐴 ∈ ℝ)
15 mnflt 9849 . . . . . . . . . . 11 (-𝑒𝐴 ∈ ℝ → -∞ < -𝑒𝐴)
1614, 15syl 14 . . . . . . . . . 10 (𝐴 ∈ ℝ → -∞ < -𝑒𝐴)
1716adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -∞ < -𝑒𝐴)
1812, 17eqbrtrd 4051 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → -𝑒𝐵 < -𝑒𝐴)
1918a1d 22 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
20 simpr 110 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → 𝐵 = -∞)
2120breq2d 4041 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
22 rexr 8065 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
23 nltmnf 9854 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2422, 23syl 14 . . . . . . . . . 10 (𝐴 ∈ ℝ → ¬ 𝐴 < -∞)
2524adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → ¬ 𝐴 < -∞)
2625pm2.21d 620 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < -∞ → -𝑒𝐵 < -𝑒𝐴))
2721, 26sylbid 150 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
288, 19, 273jaodan 1317 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
292, 28sylan2b 287 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3029expimpd 363 . . . 4 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
31 simpl 109 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → 𝐴 = +∞)
3231breq1d 4039 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
33 pnfnlt 9853 . . . . . . . 8 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3433adantl 277 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3534pm2.21d 620 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3632, 35sylbid 150 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → -𝑒𝐵 < -𝑒𝐴))
3736expimpd 363 . . . 4 (𝐴 = +∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
38 breq1 4032 . . . . . 6 (𝐴 = -∞ → (𝐴 < 𝐵 ↔ -∞ < 𝐵))
3938anbi2d 464 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) ↔ (𝐵 ∈ ℝ* ∧ -∞ < 𝐵)))
40 renegcl 8280 . . . . . . . . . . 11 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
414, 40eqeltrd 2270 . . . . . . . . . 10 (𝐵 ∈ ℝ → -𝑒𝐵 ∈ ℝ)
4241adantr 276 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 ∈ ℝ)
43 ltpnf 9846 . . . . . . . . 9 (-𝑒𝐵 ∈ ℝ → -𝑒𝐵 < +∞)
4442, 43syl 14 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
4511adantr 276 . . . . . . . . 9 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 = -∞)
46 mnfltpnf 9851 . . . . . . . . 9 -∞ < +∞
4745, 46eqbrtrdi 4068 . . . . . . . 8 ((𝐵 = +∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
48 breq2 4033 . . . . . . . . . 10 (𝐵 = -∞ → (-∞ < 𝐵 ↔ -∞ < -∞))
49 mnfxr 8076 . . . . . . . . . . . 12 -∞ ∈ ℝ*
50 nltmnf 9854 . . . . . . . . . . . 12 (-∞ ∈ ℝ* → ¬ -∞ < -∞)
5149, 50ax-mp 5 . . . . . . . . . . 11 ¬ -∞ < -∞
5251pm2.21i 647 . . . . . . . . . 10 (-∞ < -∞ → -𝑒𝐵 < +∞)
5348, 52biimtrdi 163 . . . . . . . . 9 (𝐵 = -∞ → (-∞ < 𝐵 → -𝑒𝐵 < +∞))
5453imp 124 . . . . . . . 8 ((𝐵 = -∞ ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
5544, 47, 543jaoian 1316 . . . . . . 7 (((𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞) ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
562, 55sylanb 284 . . . . . 6 ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < +∞)
57 xnegeq 9893 . . . . . . . 8 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
58 xnegmnf 9895 . . . . . . . 8 -𝑒-∞ = +∞
5957, 58eqtrdi 2242 . . . . . . 7 (𝐴 = -∞ → -𝑒𝐴 = +∞)
6059breq2d 4041 . . . . . 6 (𝐴 = -∞ → (-𝑒𝐵 < -𝑒𝐴 ↔ -𝑒𝐵 < +∞))
6156, 60imbitrrid 156 . . . . 5 (𝐴 = -∞ → ((𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6239, 61sylbid 150 . . . 4 (𝐴 = -∞ → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
6330, 37, 623jaoi 1314 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
641, 63sylbi 121 . 2 (𝐴 ∈ ℝ* → ((𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴))
65643impib 1203 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → -𝑒𝐵 < -𝑒𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  w3o 979  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  cr 7871  +∞cpnf 8051  -∞cmnf 8052  *cxr 8053   < clt 8054  -cneg 8191  -𝑒cxne 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-sub 8192  df-neg 8193  df-xneg 9838
This theorem is referenced by:  xltneg  9902
  Copyright terms: Public domain W3C validator