Step | Hyp | Ref
| Expression |
1 | | 3simpb 990 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁)) |
2 | | oveq2 5861 |
. . . . . . . 8
⊢ (𝑤 = 1 → (2↑𝑤) = (2↑1)) |
3 | 2 | breq1d 3999 |
. . . . . . 7
⊢ (𝑤 = 1 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁)) |
4 | 3 | notbid 662 |
. . . . . 6
⊢ (𝑤 = 1 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑1) ∥ 𝑁)) |
5 | 4 | anbi2d 461 |
. . . . 5
⊢ (𝑤 = 1 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑1)
∥ 𝑁))) |
6 | 5 | imbi1d 230 |
. . . 4
⊢ (𝑤 = 1 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑1)
∥ 𝑁) →
∃𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
7 | | oveq2 5861 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘)) |
8 | 7 | breq1d 3999 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁)) |
9 | 8 | notbid 662 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝑘) ∥ 𝑁)) |
10 | 9 | anbi2d 461 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁))) |
11 | 10 | imbi1d 230 |
. . . 4
⊢ (𝑤 = 𝑘 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
12 | | oveq2 5861 |
. . . . . . . 8
⊢ (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1))) |
13 | 12 | breq1d 3999 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → ((2↑𝑤) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁)) |
14 | 13 | notbid 662 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) |
15 | 14 | anbi2d 461 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))) |
16 | 15 | imbi1d 230 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
17 | | oveq2 5861 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (2↑𝑤) = (2↑𝐴)) |
18 | 17 | breq1d 3999 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝐴) ∥ 𝑁)) |
19 | 18 | notbid 662 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝐴) ∥ 𝑁)) |
20 | 19 | anbi2d 461 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁))) |
21 | 20 | imbi1d 230 |
. . . 4
⊢ (𝑤 = 𝐴 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
22 | | 0nn0 9150 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
23 | 22 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 0 ∈ ℕ0) |
24 | | oveq2 5861 |
. . . . . . . 8
⊢ (𝑚 = 0 → (2↑𝑚) = (2↑0)) |
25 | 24 | breq1d 3999 |
. . . . . . 7
⊢ (𝑚 = 0 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑0) ∥ 𝑁)) |
26 | | oveq1 5860 |
. . . . . . . . . 10
⊢ (𝑚 = 0 → (𝑚 + 1) = (0 + 1)) |
27 | 26 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑚 = 0 → (2↑(𝑚 + 1)) = (2↑(0 +
1))) |
28 | 27 | breq1d 3999 |
. . . . . . . 8
⊢ (𝑚 = 0 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(0 + 1)) ∥ 𝑁)) |
29 | 28 | notbid 662 |
. . . . . . 7
⊢ (𝑚 = 0 → (¬
(2↑(𝑚 + 1)) ∥
𝑁 ↔ ¬ (2↑(0 +
1)) ∥ 𝑁)) |
30 | 25, 29 | anbi12d 470 |
. . . . . 6
⊢ (𝑚 = 0 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1))
∥ 𝑁))) |
31 | 30 | adantl 275 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁) ∧
𝑚 = 0) →
(((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1))
∥ 𝑁))) |
32 | | 2cnd 8951 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 2 ∈ ℂ) |
33 | 32 | exp0d 10603 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ (2↑0) = 1) |
34 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 𝑁 ∈
ℕ) |
35 | 34 | nnzd 9333 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 𝑁 ∈
ℤ) |
36 | | 1dvds 11767 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 1 ∥
𝑁) |
37 | 35, 36 | syl 14 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 1 ∥ 𝑁) |
38 | 33, 37 | eqbrtrd 4011 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ (2↑0) ∥ 𝑁) |
39 | | simpr 109 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ¬ (2↑1) ∥ 𝑁) |
40 | | 0p1e1 8992 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
41 | 40 | oveq2i 5864 |
. . . . . . . 8
⊢
(2↑(0 + 1)) = (2↑1) |
42 | 41 | breq1i 3996 |
. . . . . . 7
⊢
((2↑(0 + 1)) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁) |
43 | 39, 42 | sylnibr 672 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ¬ (2↑(0 + 1)) ∥ 𝑁) |
44 | 38, 43 | jca 304 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)) |
45 | 23, 31, 44 | rspcedvd 2840 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ∃𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
46 | | simpll 524 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ) |
47 | 46 | nnnn0d 9188 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ0) |
48 | | oveq2 5861 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘)) |
49 | 48 | breq1d 3999 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁)) |
50 | | oveq1 5860 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1)) |
51 | 50 | oveq2d 5869 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → (2↑(𝑚 + 1)) = (2↑(𝑘 + 1))) |
52 | 51 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁)) |
53 | 52 | notbid 662 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) |
54 | 49, 53 | anbi12d 470 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))) |
55 | 54 | adantl 275 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) ∧ 𝑚 = 𝑘) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))) |
56 | | simpr 109 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → (2↑𝑘) ∥ 𝑁) |
57 | | simplrr 531 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ¬ (2↑(𝑘 + 1)) ∥ 𝑁) |
58 | 56, 57 | jca 304 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) |
59 | 47, 55, 58 | rspcedvd 2840 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
60 | 59 | adantllr 478 |
. . . . . 6
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
61 | | simprl 526 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℕ) |
62 | 61 | anim1i 338 |
. . . . . . 7
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁)) |
63 | | simpllr 529 |
. . . . . . 7
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) |
64 | 62, 63 | mpd 13 |
. . . . . 6
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
65 | | 2nn 9039 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
66 | | simpll 524 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ) |
67 | 66 | nnnn0d 9188 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ0) |
68 | | nnexpcl 10489 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
69 | 65, 67, 68 | sylancr 412 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → (2↑𝑘) ∈ ℕ) |
70 | 61 | nnzd 9333 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℤ) |
71 | | dvdsdc 11760 |
. . . . . . . 8
⊢
(((2↑𝑘) ∈
ℕ ∧ 𝑁 ∈
ℤ) → DECID (2↑𝑘) ∥ 𝑁) |
72 | 69, 70, 71 | syl2anc 409 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → DECID (2↑𝑘) ∥ 𝑁) |
73 | | exmiddc 831 |
. . . . . . 7
⊢
(DECID (2↑𝑘) ∥ 𝑁 → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁)) |
74 | 72, 73 | syl 14 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁)) |
75 | 60, 64, 74 | mpjaodan 793 |
. . . . 5
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
76 | 75 | exp31 362 |
. . . 4
⊢ (𝑘 ∈ ℕ → (((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) → ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
77 | 6, 11, 16, 21, 45, 76 | nnind 8894 |
. . 3
⊢ (𝐴 ∈ ℕ → ((𝑁 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) |
78 | 77 | 3ad2ant2 1014 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) |
79 | 1, 78 | mpd 13 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |