ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn GIF version

Theorem pw2dvdslemn 11236
Description: Lemma for pw2dvds 11237. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁
Allowed substitution hint:   𝐴(𝑚)

Proof of Theorem pw2dvdslemn
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 941 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁))
2 oveq2 5642 . . . . . . . 8 (𝑤 = 1 → (2↑𝑤) = (2↑1))
32breq1d 3847 . . . . . . 7 (𝑤 = 1 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁))
43notbid 627 . . . . . 6 (𝑤 = 1 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑1) ∥ 𝑁))
54anbi2d 452 . . . . 5 (𝑤 = 1 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁)))
65imbi1d 229 . . . 4 (𝑤 = 1 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
7 oveq2 5642 . . . . . . . 8 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
87breq1d 3847 . . . . . . 7 (𝑤 = 𝑘 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
98notbid 627 . . . . . 6 (𝑤 = 𝑘 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝑘) ∥ 𝑁))
109anbi2d 452 . . . . 5 (𝑤 = 𝑘 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁)))
1110imbi1d 229 . . . 4 (𝑤 = 𝑘 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
12 oveq2 5642 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1312breq1d 3847 . . . . . . 7 (𝑤 = (𝑘 + 1) → ((2↑𝑤) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
1413notbid 627 . . . . . 6 (𝑤 = (𝑘 + 1) → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
1514anbi2d 452 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
1615imbi1d 229 . . . 4 (𝑤 = (𝑘 + 1) → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
17 oveq2 5642 . . . . . . . 8 (𝑤 = 𝐴 → (2↑𝑤) = (2↑𝐴))
1817breq1d 3847 . . . . . . 7 (𝑤 = 𝐴 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝐴) ∥ 𝑁))
1918notbid 627 . . . . . 6 (𝑤 = 𝐴 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝐴) ∥ 𝑁))
2019anbi2d 452 . . . . 5 (𝑤 = 𝐴 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁)))
2120imbi1d 229 . . . 4 (𝑤 = 𝐴 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
22 0nn0 8658 . . . . . 6 0 ∈ ℕ0
2322a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 0 ∈ ℕ0)
24 oveq2 5642 . . . . . . . 8 (𝑚 = 0 → (2↑𝑚) = (2↑0))
2524breq1d 3847 . . . . . . 7 (𝑚 = 0 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑0) ∥ 𝑁))
26 oveq1 5641 . . . . . . . . . 10 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
2726oveq2d 5650 . . . . . . . . 9 (𝑚 = 0 → (2↑(𝑚 + 1)) = (2↑(0 + 1)))
2827breq1d 3847 . . . . . . . 8 (𝑚 = 0 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(0 + 1)) ∥ 𝑁))
2928notbid 627 . . . . . . 7 (𝑚 = 0 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(0 + 1)) ∥ 𝑁))
3025, 29anbi12d 457 . . . . . 6 (𝑚 = 0 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
3130adantl 271 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) ∧ 𝑚 = 0) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
32 2cnd 8466 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 2 ∈ ℂ)
3332exp0d 10045 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) = 1)
34 simpl 107 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℕ)
3534nnzd 8837 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℤ)
36 1dvds 10903 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3735, 36syl 14 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 1 ∥ 𝑁)
3833, 37eqbrtrd 3857 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) ∥ 𝑁)
39 simpr 108 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑1) ∥ 𝑁)
40 0p1e1 8507 . . . . . . . . 9 (0 + 1) = 1
4140oveq2i 5645 . . . . . . . 8 (2↑(0 + 1)) = (2↑1)
4241breq1i 3844 . . . . . . 7 ((2↑(0 + 1)) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁)
4339, 42sylnibr 637 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑(0 + 1)) ∥ 𝑁)
4438, 43jca 300 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁))
4523, 31, 44rspcedvd 2728 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
46 simpll 496 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ)
4746nnnn0d 8696 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ0)
48 oveq2 5642 . . . . . . . . . . 11 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
4948breq1d 3847 . . . . . . . . . 10 (𝑚 = 𝑘 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
50 oveq1 5641 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
5150oveq2d 5650 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (2↑(𝑚 + 1)) = (2↑(𝑘 + 1)))
5251breq1d 3847 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
5352notbid 627 . . . . . . . . . 10 (𝑚 = 𝑘 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5449, 53anbi12d 457 . . . . . . . . 9 (𝑚 = 𝑘 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
5554adantl 271 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) ∧ 𝑚 = 𝑘) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
56 simpr 108 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → (2↑𝑘) ∥ 𝑁)
57 simplrr 503 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ¬ (2↑(𝑘 + 1)) ∥ 𝑁)
5856, 57jca 300 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5947, 55, 58rspcedvd 2728 . . . . . . 7 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
6059adantllr 465 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
61 simprl 498 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℕ)
6261anim1i 333 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁))
63 simpllr 501 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
6462, 63mpd 13 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
65 2nn 8547 . . . . . . . . 9 2 ∈ ℕ
66 simpll 496 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ)
6766nnnn0d 8696 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ0)
68 nnexpcl 9933 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
6965, 67, 68sylancr 405 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → (2↑𝑘) ∈ ℕ)
7061nnzd 8837 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℤ)
71 dvdsdc 10897 . . . . . . . 8 (((2↑𝑘) ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID (2↑𝑘) ∥ 𝑁)
7269, 70, 71syl2anc 403 . . . . . . 7 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → DECID (2↑𝑘) ∥ 𝑁)
73 exmiddc 782 . . . . . . 7 (DECID (2↑𝑘) ∥ 𝑁 → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7472, 73syl 14 . . . . . 6 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7560, 64, 74mpjaodan 747 . . . . 5 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
7675exp31 356 . . . 4 (𝑘 ∈ ℕ → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) → ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
776, 11, 16, 21, 45, 76nnind 8410 . . 3 (𝐴 ∈ ℕ → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
78773ad2ant2 965 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
791, 78mpd 13 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 664  DECID wdc 780  w3a 924   = wceq 1289  wcel 1438  wrex 2360   class class class wbr 3837  (class class class)co 5634  0cc0 7329  1c1 7330   + caddc 7332  cn 8394  2c2 8444  0cn0 8643  cz 8720  cexp 9919  cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fl 9642  df-mod 9695  df-iseq 9818  df-seq3 9819  df-exp 9920  df-dvds 10890
This theorem is referenced by:  pw2dvds  11237
  Copyright terms: Public domain W3C validator