| Step | Hyp | Ref
| Expression |
| 1 | | 3simpb 997 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁)) |
| 2 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = 1 → (2↑𝑤) = (2↑1)) |
| 3 | 2 | breq1d 4043 |
. . . . . . 7
⊢ (𝑤 = 1 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁)) |
| 4 | 3 | notbid 668 |
. . . . . 6
⊢ (𝑤 = 1 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑1) ∥ 𝑁)) |
| 5 | 4 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = 1 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑1)
∥ 𝑁))) |
| 6 | 5 | imbi1d 231 |
. . . 4
⊢ (𝑤 = 1 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑1)
∥ 𝑁) →
∃𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
| 7 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘)) |
| 8 | 7 | breq1d 4043 |
. . . . . . 7
⊢ (𝑤 = 𝑘 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁)) |
| 9 | 8 | notbid 668 |
. . . . . 6
⊢ (𝑤 = 𝑘 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝑘) ∥ 𝑁)) |
| 10 | 9 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = 𝑘 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁))) |
| 11 | 10 | imbi1d 231 |
. . . 4
⊢ (𝑤 = 𝑘 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
| 12 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1))) |
| 13 | 12 | breq1d 4043 |
. . . . . . 7
⊢ (𝑤 = (𝑘 + 1) → ((2↑𝑤) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁)) |
| 14 | 13 | notbid 668 |
. . . . . 6
⊢ (𝑤 = (𝑘 + 1) → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) |
| 15 | 14 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = (𝑘 + 1) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))) |
| 16 | 15 | imbi1d 231 |
. . . 4
⊢ (𝑤 = (𝑘 + 1) → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
| 17 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → (2↑𝑤) = (2↑𝐴)) |
| 18 | 17 | breq1d 4043 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝐴) ∥ 𝑁)) |
| 19 | 18 | notbid 668 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝐴) ∥ 𝑁)) |
| 20 | 19 | anbi2d 464 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁))) |
| 21 | 20 | imbi1d 231 |
. . . 4
⊢ (𝑤 = 𝐴 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
| 22 | | 0nn0 9264 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
| 23 | 22 | a1i 9 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 0 ∈ ℕ0) |
| 24 | | oveq2 5930 |
. . . . . . . 8
⊢ (𝑚 = 0 → (2↑𝑚) = (2↑0)) |
| 25 | 24 | breq1d 4043 |
. . . . . . 7
⊢ (𝑚 = 0 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑0) ∥ 𝑁)) |
| 26 | | oveq1 5929 |
. . . . . . . . . 10
⊢ (𝑚 = 0 → (𝑚 + 1) = (0 + 1)) |
| 27 | 26 | oveq2d 5938 |
. . . . . . . . 9
⊢ (𝑚 = 0 → (2↑(𝑚 + 1)) = (2↑(0 +
1))) |
| 28 | 27 | breq1d 4043 |
. . . . . . . 8
⊢ (𝑚 = 0 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(0 + 1)) ∥ 𝑁)) |
| 29 | 28 | notbid 668 |
. . . . . . 7
⊢ (𝑚 = 0 → (¬
(2↑(𝑚 + 1)) ∥
𝑁 ↔ ¬ (2↑(0 +
1)) ∥ 𝑁)) |
| 30 | 25, 29 | anbi12d 473 |
. . . . . 6
⊢ (𝑚 = 0 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1))
∥ 𝑁))) |
| 31 | 30 | adantl 277 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁) ∧
𝑚 = 0) →
(((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1))
∥ 𝑁))) |
| 32 | | 2cnd 9063 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 2 ∈ ℂ) |
| 33 | 32 | exp0d 10759 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ (2↑0) = 1) |
| 34 | | simpl 109 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 𝑁 ∈
ℕ) |
| 35 | 34 | nnzd 9447 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 𝑁 ∈
ℤ) |
| 36 | | 1dvds 11970 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ → 1 ∥
𝑁) |
| 37 | 35, 36 | syl 14 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ 1 ∥ 𝑁) |
| 38 | 33, 37 | eqbrtrd 4055 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ (2↑0) ∥ 𝑁) |
| 39 | | simpr 110 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ¬ (2↑1) ∥ 𝑁) |
| 40 | | 0p1e1 9104 |
. . . . . . . . 9
⊢ (0 + 1) =
1 |
| 41 | 40 | oveq2i 5933 |
. . . . . . . 8
⊢
(2↑(0 + 1)) = (2↑1) |
| 42 | 41 | breq1i 4040 |
. . . . . . 7
⊢
((2↑(0 + 1)) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁) |
| 43 | 39, 42 | sylnibr 678 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ¬ (2↑(0 + 1)) ∥ 𝑁) |
| 44 | 38, 43 | jca 306 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)) |
| 45 | 23, 31, 44 | rspcedvd 2874 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ ¬
(2↑1) ∥ 𝑁)
→ ∃𝑚 ∈
ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
| 46 | | simpll 527 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ) |
| 47 | 46 | nnnn0d 9302 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ0) |
| 48 | | oveq2 5930 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘)) |
| 49 | 48 | breq1d 4043 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁)) |
| 50 | | oveq1 5929 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1)) |
| 51 | 50 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑘 → (2↑(𝑚 + 1)) = (2↑(𝑘 + 1))) |
| 52 | 51 | breq1d 4043 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑘 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁)) |
| 53 | 52 | notbid 668 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑘 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) |
| 54 | 49, 53 | anbi12d 473 |
. . . . . . . . 9
⊢ (𝑚 = 𝑘 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))) |
| 55 | 54 | adantl 277 |
. . . . . . . 8
⊢ ((((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) ∧ 𝑚 = 𝑘) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))) |
| 56 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → (2↑𝑘) ∥ 𝑁) |
| 57 | | simplrr 536 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ¬ (2↑(𝑘 + 1)) ∥ 𝑁) |
| 58 | 56, 57 | jca 306 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) |
| 59 | 47, 55, 58 | rspcedvd 2874 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬
(2↑(𝑘 + 1)) ∥
𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
| 60 | 59 | adantllr 481 |
. . . . . 6
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
| 61 | | simprl 529 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℕ) |
| 62 | 61 | anim1i 340 |
. . . . . . 7
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁)) |
| 63 | | simpllr 534 |
. . . . . . 7
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) |
| 64 | 62, 63 | mpd 13 |
. . . . . 6
⊢ ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
| 65 | | 2nn 9152 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
| 66 | | simpll 527 |
. . . . . . . . . 10
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ) |
| 67 | 66 | nnnn0d 9302 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ0) |
| 68 | | nnexpcl 10644 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
| 69 | 65, 67, 68 | sylancr 414 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → (2↑𝑘) ∈ ℕ) |
| 70 | 61 | nnzd 9447 |
. . . . . . . 8
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℤ) |
| 71 | | dvdsdc 11963 |
. . . . . . . 8
⊢
(((2↑𝑘) ∈
ℕ ∧ 𝑁 ∈
ℤ) → DECID (2↑𝑘) ∥ 𝑁) |
| 72 | 69, 70, 71 | syl2anc 411 |
. . . . . . 7
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → DECID (2↑𝑘) ∥ 𝑁) |
| 73 | | exmiddc 837 |
. . . . . . 7
⊢
(DECID (2↑𝑘) ∥ 𝑁 → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁)) |
| 74 | 72, 73 | syl 14 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁)) |
| 75 | 60, 64, 74 | mpjaodan 799 |
. . . . 5
⊢ (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |
| 76 | 75 | exp31 364 |
. . . 4
⊢ (𝑘 ∈ ℕ → (((𝑁 ∈ ℕ ∧ ¬
(2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) → ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))) |
| 77 | 6, 11, 16, 21, 45, 76 | nnind 9006 |
. . 3
⊢ (𝐴 ∈ ℕ → ((𝑁 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) |
| 78 | 77 | 3ad2ant2 1021 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) |
| 79 | 1, 78 | mpd 13 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬
(2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0
((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) |