ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn GIF version

Theorem pw2dvdslemn 11832
Description: Lemma for pw2dvds 11833. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁
Allowed substitution hint:   𝐴(𝑚)

Proof of Theorem pw2dvdslemn
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 979 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁))
2 oveq2 5775 . . . . . . . 8 (𝑤 = 1 → (2↑𝑤) = (2↑1))
32breq1d 3934 . . . . . . 7 (𝑤 = 1 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁))
43notbid 656 . . . . . 6 (𝑤 = 1 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑1) ∥ 𝑁))
54anbi2d 459 . . . . 5 (𝑤 = 1 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁)))
65imbi1d 230 . . . 4 (𝑤 = 1 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
7 oveq2 5775 . . . . . . . 8 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
87breq1d 3934 . . . . . . 7 (𝑤 = 𝑘 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
98notbid 656 . . . . . 6 (𝑤 = 𝑘 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝑘) ∥ 𝑁))
109anbi2d 459 . . . . 5 (𝑤 = 𝑘 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁)))
1110imbi1d 230 . . . 4 (𝑤 = 𝑘 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
12 oveq2 5775 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1312breq1d 3934 . . . . . . 7 (𝑤 = (𝑘 + 1) → ((2↑𝑤) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
1413notbid 656 . . . . . 6 (𝑤 = (𝑘 + 1) → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
1514anbi2d 459 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
1615imbi1d 230 . . . 4 (𝑤 = (𝑘 + 1) → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
17 oveq2 5775 . . . . . . . 8 (𝑤 = 𝐴 → (2↑𝑤) = (2↑𝐴))
1817breq1d 3934 . . . . . . 7 (𝑤 = 𝐴 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝐴) ∥ 𝑁))
1918notbid 656 . . . . . 6 (𝑤 = 𝐴 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝐴) ∥ 𝑁))
2019anbi2d 459 . . . . 5 (𝑤 = 𝐴 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁)))
2120imbi1d 230 . . . 4 (𝑤 = 𝐴 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
22 0nn0 8985 . . . . . 6 0 ∈ ℕ0
2322a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 0 ∈ ℕ0)
24 oveq2 5775 . . . . . . . 8 (𝑚 = 0 → (2↑𝑚) = (2↑0))
2524breq1d 3934 . . . . . . 7 (𝑚 = 0 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑0) ∥ 𝑁))
26 oveq1 5774 . . . . . . . . . 10 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
2726oveq2d 5783 . . . . . . . . 9 (𝑚 = 0 → (2↑(𝑚 + 1)) = (2↑(0 + 1)))
2827breq1d 3934 . . . . . . . 8 (𝑚 = 0 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(0 + 1)) ∥ 𝑁))
2928notbid 656 . . . . . . 7 (𝑚 = 0 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(0 + 1)) ∥ 𝑁))
3025, 29anbi12d 464 . . . . . 6 (𝑚 = 0 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
3130adantl 275 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) ∧ 𝑚 = 0) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
32 2cnd 8786 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 2 ∈ ℂ)
3332exp0d 10411 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) = 1)
34 simpl 108 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℕ)
3534nnzd 9165 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℤ)
36 1dvds 11496 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3735, 36syl 14 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 1 ∥ 𝑁)
3833, 37eqbrtrd 3945 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) ∥ 𝑁)
39 simpr 109 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑1) ∥ 𝑁)
40 0p1e1 8827 . . . . . . . . 9 (0 + 1) = 1
4140oveq2i 5778 . . . . . . . 8 (2↑(0 + 1)) = (2↑1)
4241breq1i 3931 . . . . . . 7 ((2↑(0 + 1)) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁)
4339, 42sylnibr 666 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑(0 + 1)) ∥ 𝑁)
4438, 43jca 304 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁))
4523, 31, 44rspcedvd 2790 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
46 simpll 518 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ)
4746nnnn0d 9023 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ0)
48 oveq2 5775 . . . . . . . . . . 11 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
4948breq1d 3934 . . . . . . . . . 10 (𝑚 = 𝑘 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
50 oveq1 5774 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
5150oveq2d 5783 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (2↑(𝑚 + 1)) = (2↑(𝑘 + 1)))
5251breq1d 3934 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
5352notbid 656 . . . . . . . . . 10 (𝑚 = 𝑘 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5449, 53anbi12d 464 . . . . . . . . 9 (𝑚 = 𝑘 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
5554adantl 275 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) ∧ 𝑚 = 𝑘) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
56 simpr 109 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → (2↑𝑘) ∥ 𝑁)
57 simplrr 525 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ¬ (2↑(𝑘 + 1)) ∥ 𝑁)
5856, 57jca 304 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5947, 55, 58rspcedvd 2790 . . . . . . 7 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
6059adantllr 472 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
61 simprl 520 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℕ)
6261anim1i 338 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁))
63 simpllr 523 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
6462, 63mpd 13 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
65 2nn 8874 . . . . . . . . 9 2 ∈ ℕ
66 simpll 518 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ)
6766nnnn0d 9023 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ0)
68 nnexpcl 10299 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
6965, 67, 68sylancr 410 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → (2↑𝑘) ∈ ℕ)
7061nnzd 9165 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℤ)
71 dvdsdc 11490 . . . . . . . 8 (((2↑𝑘) ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID (2↑𝑘) ∥ 𝑁)
7269, 70, 71syl2anc 408 . . . . . . 7 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → DECID (2↑𝑘) ∥ 𝑁)
73 exmiddc 821 . . . . . . 7 (DECID (2↑𝑘) ∥ 𝑁 → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7472, 73syl 14 . . . . . 6 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7560, 64, 74mpjaodan 787 . . . . 5 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
7675exp31 361 . . . 4 (𝑘 ∈ ℕ → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) → ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
776, 11, 16, 21, 45, 76nnind 8729 . . 3 (𝐴 ∈ ℕ → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
78773ad2ant2 1003 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
791, 78mpd 13 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wrex 2415   class class class wbr 3924  (class class class)co 5767  0cc0 7613  1c1 7614   + caddc 7616  cn 8713  2c2 8764  0cn0 8970  cz 9047  cexp 10285  cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-dvds 11483
This theorem is referenced by:  pw2dvds  11833
  Copyright terms: Public domain W3C validator