ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn GIF version

Theorem pw2dvdslemn 12011
Description: Lemma for pw2dvds 12012. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁
Allowed substitution hint:   𝐴(𝑚)

Proof of Theorem pw2dvdslemn
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 980 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁))
2 oveq2 5822 . . . . . . . 8 (𝑤 = 1 → (2↑𝑤) = (2↑1))
32breq1d 3971 . . . . . . 7 (𝑤 = 1 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁))
43notbid 657 . . . . . 6 (𝑤 = 1 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑1) ∥ 𝑁))
54anbi2d 460 . . . . 5 (𝑤 = 1 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁)))
65imbi1d 230 . . . 4 (𝑤 = 1 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
7 oveq2 5822 . . . . . . . 8 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
87breq1d 3971 . . . . . . 7 (𝑤 = 𝑘 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
98notbid 657 . . . . . 6 (𝑤 = 𝑘 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝑘) ∥ 𝑁))
109anbi2d 460 . . . . 5 (𝑤 = 𝑘 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁)))
1110imbi1d 230 . . . 4 (𝑤 = 𝑘 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
12 oveq2 5822 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1312breq1d 3971 . . . . . . 7 (𝑤 = (𝑘 + 1) → ((2↑𝑤) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
1413notbid 657 . . . . . 6 (𝑤 = (𝑘 + 1) → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
1514anbi2d 460 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
1615imbi1d 230 . . . 4 (𝑤 = (𝑘 + 1) → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
17 oveq2 5822 . . . . . . . 8 (𝑤 = 𝐴 → (2↑𝑤) = (2↑𝐴))
1817breq1d 3971 . . . . . . 7 (𝑤 = 𝐴 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝐴) ∥ 𝑁))
1918notbid 657 . . . . . 6 (𝑤 = 𝐴 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝐴) ∥ 𝑁))
2019anbi2d 460 . . . . 5 (𝑤 = 𝐴 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁)))
2120imbi1d 230 . . . 4 (𝑤 = 𝐴 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
22 0nn0 9084 . . . . . 6 0 ∈ ℕ0
2322a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 0 ∈ ℕ0)
24 oveq2 5822 . . . . . . . 8 (𝑚 = 0 → (2↑𝑚) = (2↑0))
2524breq1d 3971 . . . . . . 7 (𝑚 = 0 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑0) ∥ 𝑁))
26 oveq1 5821 . . . . . . . . . 10 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
2726oveq2d 5830 . . . . . . . . 9 (𝑚 = 0 → (2↑(𝑚 + 1)) = (2↑(0 + 1)))
2827breq1d 3971 . . . . . . . 8 (𝑚 = 0 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(0 + 1)) ∥ 𝑁))
2928notbid 657 . . . . . . 7 (𝑚 = 0 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(0 + 1)) ∥ 𝑁))
3025, 29anbi12d 465 . . . . . 6 (𝑚 = 0 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
3130adantl 275 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) ∧ 𝑚 = 0) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
32 2cnd 8885 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 2 ∈ ℂ)
3332exp0d 10522 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) = 1)
34 simpl 108 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℕ)
3534nnzd 9264 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℤ)
36 1dvds 11674 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3735, 36syl 14 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 1 ∥ 𝑁)
3833, 37eqbrtrd 3982 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) ∥ 𝑁)
39 simpr 109 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑1) ∥ 𝑁)
40 0p1e1 8926 . . . . . . . . 9 (0 + 1) = 1
4140oveq2i 5825 . . . . . . . 8 (2↑(0 + 1)) = (2↑1)
4241breq1i 3968 . . . . . . 7 ((2↑(0 + 1)) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁)
4339, 42sylnibr 667 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑(0 + 1)) ∥ 𝑁)
4438, 43jca 304 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁))
4523, 31, 44rspcedvd 2819 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
46 simpll 519 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ)
4746nnnn0d 9122 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ0)
48 oveq2 5822 . . . . . . . . . . 11 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
4948breq1d 3971 . . . . . . . . . 10 (𝑚 = 𝑘 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
50 oveq1 5821 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
5150oveq2d 5830 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (2↑(𝑚 + 1)) = (2↑(𝑘 + 1)))
5251breq1d 3971 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
5352notbid 657 . . . . . . . . . 10 (𝑚 = 𝑘 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5449, 53anbi12d 465 . . . . . . . . 9 (𝑚 = 𝑘 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
5554adantl 275 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) ∧ 𝑚 = 𝑘) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
56 simpr 109 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → (2↑𝑘) ∥ 𝑁)
57 simplrr 526 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ¬ (2↑(𝑘 + 1)) ∥ 𝑁)
5856, 57jca 304 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5947, 55, 58rspcedvd 2819 . . . . . . 7 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
6059adantllr 473 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
61 simprl 521 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℕ)
6261anim1i 338 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁))
63 simpllr 524 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
6462, 63mpd 13 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
65 2nn 8973 . . . . . . . . 9 2 ∈ ℕ
66 simpll 519 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ)
6766nnnn0d 9122 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ0)
68 nnexpcl 10410 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
6965, 67, 68sylancr 411 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → (2↑𝑘) ∈ ℕ)
7061nnzd 9264 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℤ)
71 dvdsdc 11668 . . . . . . . 8 (((2↑𝑘) ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID (2↑𝑘) ∥ 𝑁)
7269, 70, 71syl2anc 409 . . . . . . 7 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → DECID (2↑𝑘) ∥ 𝑁)
73 exmiddc 822 . . . . . . 7 (DECID (2↑𝑘) ∥ 𝑁 → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7472, 73syl 14 . . . . . 6 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7560, 64, 74mpjaodan 788 . . . . 5 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
7675exp31 362 . . . 4 (𝑘 ∈ ℕ → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) → ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
776, 11, 16, 21, 45, 76nnind 8828 . . 3 (𝐴 ∈ ℕ → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
78773ad2ant2 1004 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
791, 78mpd 13 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 820  w3a 963   = wceq 1332  wcel 2125  wrex 2433   class class class wbr 3961  (class class class)co 5814  0cc0 7711  1c1 7712   + caddc 7714  cn 8812  2c2 8863  0cn0 9069  cz 9146  cexp 10396  cdvds 11660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-dvds 11661
This theorem is referenced by:  pw2dvds  12012
  Copyright terms: Public domain W3C validator