ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdslemn GIF version

Theorem pw2dvdslemn 12531
Description: Lemma for pw2dvds 12532. If a natural number has some power of two which does not divide it, there is a highest power of two which does divide it. (Contributed by Jim Kingdon, 14-Nov-2021.)
Assertion
Ref Expression
pw2dvdslemn ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁
Allowed substitution hint:   𝐴(𝑚)

Proof of Theorem pw2dvdslemn
Dummy variables 𝑤 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 998 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁))
2 oveq2 5959 . . . . . . . 8 (𝑤 = 1 → (2↑𝑤) = (2↑1))
32breq1d 4057 . . . . . . 7 (𝑤 = 1 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁))
43notbid 669 . . . . . 6 (𝑤 = 1 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑1) ∥ 𝑁))
54anbi2d 464 . . . . 5 (𝑤 = 1 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁)))
65imbi1d 231 . . . 4 (𝑤 = 1 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
7 oveq2 5959 . . . . . . . 8 (𝑤 = 𝑘 → (2↑𝑤) = (2↑𝑘))
87breq1d 4057 . . . . . . 7 (𝑤 = 𝑘 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
98notbid 669 . . . . . 6 (𝑤 = 𝑘 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝑘) ∥ 𝑁))
109anbi2d 464 . . . . 5 (𝑤 = 𝑘 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁)))
1110imbi1d 231 . . . 4 (𝑤 = 𝑘 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
12 oveq2 5959 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (2↑𝑤) = (2↑(𝑘 + 1)))
1312breq1d 4057 . . . . . . 7 (𝑤 = (𝑘 + 1) → ((2↑𝑤) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
1413notbid 669 . . . . . 6 (𝑤 = (𝑘 + 1) → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
1514anbi2d 464 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
1615imbi1d 231 . . . 4 (𝑤 = (𝑘 + 1) → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
17 oveq2 5959 . . . . . . . 8 (𝑤 = 𝐴 → (2↑𝑤) = (2↑𝐴))
1817breq1d 4057 . . . . . . 7 (𝑤 = 𝐴 → ((2↑𝑤) ∥ 𝑁 ↔ (2↑𝐴) ∥ 𝑁))
1918notbid 669 . . . . . 6 (𝑤 = 𝐴 → (¬ (2↑𝑤) ∥ 𝑁 ↔ ¬ (2↑𝐴) ∥ 𝑁))
2019anbi2d 464 . . . . 5 (𝑤 = 𝐴 → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) ↔ (𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁)))
2120imbi1d 231 . . . 4 (𝑤 = 𝐴 → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑤) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) ↔ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
22 0nn0 9317 . . . . . 6 0 ∈ ℕ0
2322a1i 9 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 0 ∈ ℕ0)
24 oveq2 5959 . . . . . . . 8 (𝑚 = 0 → (2↑𝑚) = (2↑0))
2524breq1d 4057 . . . . . . 7 (𝑚 = 0 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑0) ∥ 𝑁))
26 oveq1 5958 . . . . . . . . . 10 (𝑚 = 0 → (𝑚 + 1) = (0 + 1))
2726oveq2d 5967 . . . . . . . . 9 (𝑚 = 0 → (2↑(𝑚 + 1)) = (2↑(0 + 1)))
2827breq1d 4057 . . . . . . . 8 (𝑚 = 0 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(0 + 1)) ∥ 𝑁))
2928notbid 669 . . . . . . 7 (𝑚 = 0 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(0 + 1)) ∥ 𝑁))
3025, 29anbi12d 473 . . . . . 6 (𝑚 = 0 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
3130adantl 277 . . . . 5 (((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) ∧ 𝑚 = 0) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁)))
32 2cnd 9116 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 2 ∈ ℂ)
3332exp0d 10819 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) = 1)
34 simpl 109 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℕ)
3534nnzd 9501 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 𝑁 ∈ ℤ)
36 1dvds 12160 . . . . . . . 8 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
3735, 36syl 14 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → 1 ∥ 𝑁)
3833, 37eqbrtrd 4069 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → (2↑0) ∥ 𝑁)
39 simpr 110 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑1) ∥ 𝑁)
40 0p1e1 9157 . . . . . . . . 9 (0 + 1) = 1
4140oveq2i 5962 . . . . . . . 8 (2↑(0 + 1)) = (2↑1)
4241breq1i 4054 . . . . . . 7 ((2↑(0 + 1)) ∥ 𝑁 ↔ (2↑1) ∥ 𝑁)
4339, 42sylnibr 679 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ¬ (2↑(0 + 1)) ∥ 𝑁)
4438, 43jca 306 . . . . 5 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ((2↑0) ∥ 𝑁 ∧ ¬ (2↑(0 + 1)) ∥ 𝑁))
4523, 31, 44rspcedvd 2884 . . . 4 ((𝑁 ∈ ℕ ∧ ¬ (2↑1) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
46 simpll 527 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ)
4746nnnn0d 9355 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → 𝑘 ∈ ℕ0)
48 oveq2 5959 . . . . . . . . . . 11 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
4948breq1d 4057 . . . . . . . . . 10 (𝑚 = 𝑘 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑘) ∥ 𝑁))
50 oveq1 5958 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (𝑚 + 1) = (𝑘 + 1))
5150oveq2d 5967 . . . . . . . . . . . 12 (𝑚 = 𝑘 → (2↑(𝑚 + 1)) = (2↑(𝑘 + 1)))
5251breq1d 4057 . . . . . . . . . . 11 (𝑚 = 𝑘 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑘 + 1)) ∥ 𝑁))
5352notbid 669 . . . . . . . . . 10 (𝑚 = 𝑘 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5449, 53anbi12d 473 . . . . . . . . 9 (𝑚 = 𝑘 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
5554adantl 277 . . . . . . . 8 ((((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) ∧ 𝑚 = 𝑘) → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)))
56 simpr 110 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → (2↑𝑘) ∥ 𝑁)
57 simplrr 536 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ¬ (2↑(𝑘 + 1)) ∥ 𝑁)
5856, 57jca 306 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ((2↑𝑘) ∥ 𝑁 ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁))
5947, 55, 58rspcedvd 2884 . . . . . . 7 (((𝑘 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
6059adantllr 481 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
61 simprl 529 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℕ)
6261anim1i 340 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → (𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁))
63 simpllr 534 . . . . . . 7 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
6462, 63mpd 13 . . . . . 6 ((((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
65 2nn 9205 . . . . . . . . 9 2 ∈ ℕ
66 simpll 527 . . . . . . . . . 10 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ)
6766nnnn0d 9355 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑘 ∈ ℕ0)
68 nnexpcl 10704 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
6965, 67, 68sylancr 414 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → (2↑𝑘) ∈ ℕ)
7061nnzd 9501 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → 𝑁 ∈ ℤ)
71 dvdsdc 12153 . . . . . . . 8 (((2↑𝑘) ∈ ℕ ∧ 𝑁 ∈ ℤ) → DECID (2↑𝑘) ∥ 𝑁)
7269, 70, 71syl2anc 411 . . . . . . 7 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → DECID (2↑𝑘) ∥ 𝑁)
73 exmiddc 838 . . . . . . 7 (DECID (2↑𝑘) ∥ 𝑁 → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7472, 73syl 14 . . . . . 6 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ((2↑𝑘) ∥ 𝑁 ∨ ¬ (2↑𝑘) ∥ 𝑁))
7560, 64, 74mpjaodan 800 . . . . 5 (((𝑘 ∈ ℕ ∧ ((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))) ∧ (𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁)) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
7675exp31 364 . . . 4 (𝑘 ∈ ℕ → (((𝑁 ∈ ℕ ∧ ¬ (2↑𝑘) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)) → ((𝑁 ∈ ℕ ∧ ¬ (2↑(𝑘 + 1)) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))))
776, 11, 16, 21, 45, 76nnind 9059 . . 3 (𝐴 ∈ ℕ → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
78773ad2ant2 1022 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ((𝑁 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
791, 78mpd 13 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ ¬ (2↑𝐴) ∥ 𝑁) → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4047  (class class class)co 5951  0cc0 7932  1c1 7933   + caddc 7935  cn 9043  2c2 9094  0cn0 9302  cz 9379  cexp 10690  cdvds 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-dvds 12143
This theorem is referenced by:  pw2dvds  12532
  Copyright terms: Public domain W3C validator