ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdstr GIF version

Theorem dvdstr 11530
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))

Proof of Theorem dvdstr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 978 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2 3simpc 980 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 3simpb 979 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 zmulcl 9107 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
54adantl 275 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
6 oveq2 5782 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
76adantr 274 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
8 eqeq2 2149 . . . . 5 ((𝑦 · 𝑀) = 𝑁 → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
98adantl 275 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
107, 9mpbid 146 . . 3 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = 𝑁)
11 zcn 9059 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
12 zcn 9059 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
13 zcn 9059 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
14 mulass 7751 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑥 · (𝑦 · 𝐾)))
15 mul12 7891 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑥 · (𝑦 · 𝐾)) = (𝑦 · (𝑥 · 𝐾)))
1614, 15eqtrd 2172 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
1711, 12, 13, 16syl3an 1258 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
18173comr 1189 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
19183expb 1182 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
20193ad2antl1 1143 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
2120eqeq1d 2148 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝑦) · 𝐾) = 𝑁 ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
2210, 21syl5ibr 155 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑥 · 𝑦) · 𝐾) = 𝑁))
231, 2, 3, 5, 22dvds2lem 11505 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  cc 7618   · cmul 7625  cz 9054  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-dvds 11494
This theorem is referenced by:  dvdsmultr1  11531  dvdsmultr2  11533  4dvdseven  11614  dvdsgcdb  11701  dvdsmulgcd  11713  gcddvdslcm  11754  lcmgcdeq  11764  lcmdvdsb  11765  mulgcddvds  11775  rpmulgcd2  11776  rpdvds  11780  exprmfct  11818  rpexp  11831  phimullem  11901
  Copyright terms: Public domain W3C validator