![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdstr | GIF version |
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdstr | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 961 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) | |
2 | 3simpc 963 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | 3simpb 962 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
4 | zmulcl 9011 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ) | |
5 | 4 | adantl 273 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ) |
6 | oveq2 5736 | . . . . 5 ⊢ ((𝑥 · 𝐾) = 𝑀 → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀)) | |
7 | 6 | adantr 272 | . . . 4 ⊢ (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀)) |
8 | eqeq2 2124 | . . . . 5 ⊢ ((𝑦 · 𝑀) = 𝑁 → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁)) | |
9 | 8 | adantl 273 | . . . 4 ⊢ (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁)) |
10 | 7, 9 | mpbid 146 | . . 3 ⊢ (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = 𝑁) |
11 | zcn 8963 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
12 | zcn 8963 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
13 | zcn 8963 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
14 | mulass 7675 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑥 · (𝑦 · 𝐾))) | |
15 | mul12 7814 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑥 · (𝑦 · 𝐾)) = (𝑦 · (𝑥 · 𝐾))) | |
16 | 14, 15 | eqtrd 2147 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾))) |
17 | 11, 12, 13, 16 | syl3an 1241 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾))) |
18 | 17 | 3comr 1172 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾))) |
19 | 18 | 3expb 1165 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾))) |
20 | 19 | 3ad2antl1 1126 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾))) |
21 | 20 | eqeq1d 2123 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝑦) · 𝐾) = 𝑁 ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁)) |
22 | 10, 21 | syl5ibr 155 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑥 · 𝑦) · 𝐾) = 𝑁)) |
23 | 1, 2, 3, 5, 22 | dvds2lem 11353 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝑀 ∥ 𝑁) → 𝐾 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 class class class wbr 3895 (class class class)co 5728 ℂcc 7545 · cmul 7552 ℤcz 8958 ∥ cdvds 11341 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-sub 7858 df-neg 7859 df-inn 8631 df-n0 8882 df-z 8959 df-dvds 11342 |
This theorem is referenced by: dvdsmultr1 11379 dvdsmultr2 11381 4dvdseven 11462 dvdsgcdb 11547 dvdsmulgcd 11559 gcddvdslcm 11600 lcmgcdeq 11610 lcmdvdsb 11611 mulgcddvds 11621 rpmulgcd2 11622 rpdvds 11626 exprmfct 11664 rpexp 11677 phimullem 11746 |
Copyright terms: Public domain | W3C validator |