Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2sub GIF version

Theorem dvds2sub 11584
 Description: If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2sub ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀𝑁)))

Proof of Theorem dvds2sub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 979 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2 3simpb 980 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 zsubcl 9139 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
43anim2i 340 . . 3 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ))
543impb 1178 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ (𝑀𝑁) ∈ ℤ))
6 zsubcl 9139 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥𝑦) ∈ ℤ)
76adantl 275 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥𝑦) ∈ ℤ)
8 zcn 9103 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 9103 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
10 zcn 9103 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
11 subdir 8192 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥𝑦) · 𝐾) = ((𝑥 · 𝐾) − (𝑦 · 𝐾)))
128, 9, 10, 11syl3an 1259 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥𝑦) · 𝐾) = ((𝑥 · 𝐾) − (𝑦 · 𝐾)))
13123comr 1190 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥𝑦) · 𝐾) = ((𝑥 · 𝐾) − (𝑦 · 𝐾)))
14133expb 1183 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥𝑦) · 𝐾) = ((𝑥 · 𝐾) − (𝑦 · 𝐾)))
15 oveq12 5792 . . . . 5 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑥 · 𝐾) − (𝑦 · 𝐾)) = (𝑀𝑁))
1614, 15sylan9eq 2193 . . . 4 (((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁)) → ((𝑥𝑦) · 𝐾) = (𝑀𝑁))
1716ex 114 . . 3 ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑥𝑦) · 𝐾) = (𝑀𝑁)))
18173ad2antl1 1144 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑥𝑦) · 𝐾) = (𝑀𝑁)))
191, 2, 5, 7, 18dvds2lem 11561 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ (𝑀𝑁)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   class class class wbr 3938  (class class class)co 5783  ℂcc 7662   · cmul 7669   − cmin 7977  ℤcz 9098   ∥ cdvds 11549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-0id 7772  ax-rnegex 7773  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-ltadd 7780 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-br 3939  df-opab 3999  df-id 4224  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-iota 5097  df-fun 5134  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-inn 8765  df-n0 9022  df-z 9099  df-dvds 11550 This theorem is referenced by:  dvds2subd  11585  dvdssub2  11591
 Copyright terms: Public domain W3C validator