ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muldvds1 GIF version

Theorem muldvds1 12335
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
muldvds1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝐾𝑁))

Proof of Theorem muldvds1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zmulcl 9508 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21anim1i 340 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
323impa 1218 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 3simpb 1019 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
5 zmulcl 9508 . . . 4 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · 𝑀) ∈ ℤ)
65ancoms 268 . . 3 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑀) ∈ ℤ)
763ad2antl2 1184 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝑀) ∈ ℤ)
8 zcn 9459 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 9459 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
10 zcn 9459 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
11 mulass 8138 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
12 mul32 8284 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝐾) · 𝑀) = ((𝑥 · 𝑀) · 𝐾))
1311, 12eqtr3d 2264 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · (𝐾 · 𝑀)) = ((𝑥 · 𝑀) · 𝐾))
148, 9, 10, 13syl3an 1313 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = ((𝑥 · 𝑀) · 𝐾))
15143coml 1234 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = ((𝑥 · 𝑀) · 𝐾))
16153expa 1227 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = ((𝑥 · 𝑀) · 𝐾))
17163adantl3 1179 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = ((𝑥 · 𝑀) · 𝐾))
1817eqeq1d 2238 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = 𝑁 ↔ ((𝑥 · 𝑀) · 𝐾) = 𝑁))
1918biimpd 144 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = 𝑁 → ((𝑥 · 𝑀) · 𝐾) = 𝑁))
203, 4, 7, 19dvds1lem 12321 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝐾𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6007  cc 8005   · cmul 8012  cz 9454  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-dvds 12307
This theorem is referenced by:  3dvds  12383  pw2dvdseulemle  12697
  Copyright terms: Public domain W3C validator