ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndissubm GIF version

Theorem mndissubm 13307
Description: If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
mndissubm.b 𝐵 = (Base‘𝐺)
mndissubm.s 𝑆 = (Base‘𝐻)
mndissubm.z 0 = (0g𝐺)
Assertion
Ref Expression
mndissubm ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))

Proof of Theorem mndissubm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1006 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆𝐵)
2 simpr2 1007 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 0𝑆)
3 mndmgm 13254 . . . . . . 7 (𝐺 ∈ Mnd → 𝐺 ∈ Mgm)
4 mndmgm 13254 . . . . . . 7 (𝐻 ∈ Mnd → 𝐻 ∈ Mgm)
53, 4anim12i 338 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
65ad2antrr 488 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm))
7 3simpb 998 . . . . . 6 ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
87ad2antlr 489 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))))
9 simpr 110 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎𝑆𝑏𝑆))
10 mndissubm.b . . . . . 6 𝐵 = (Base‘𝐺)
11 mndissubm.s . . . . . 6 𝑆 = (Base‘𝐻)
1210, 11mgmsscl 13193 . . . . 5 (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
136, 8, 9, 12syl3anc 1250 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎(+g𝐺)𝑏) ∈ 𝑆)
1413ralrimivva 2588 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)
15 mndissubm.z . . . . 5 0 = (0g𝐺)
16 eqid 2205 . . . . 5 (+g𝐺) = (+g𝐺)
1710, 15, 16issubm 13304 . . . 4 (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)))
1817ad2antrr 488 . . 3 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑎𝑆𝑏𝑆 (𝑎(+g𝐺)𝑏) ∈ 𝑆)))
191, 2, 14, 18mpbir3and 1183 . 2 (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubMnd‘𝐺))
2019ex 115 1 ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176  wral 2484  wss 3166   × cxp 4673  cres 4677  cfv 5271  (class class class)co 5944  Basecbs 12832  +gcplusg 12909  0gc0g 13088  Mgmcmgm 13186  Mndcmnd 13248  SubMndcsubmnd 13290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-submnd 13292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator