| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndissubm | GIF version | ||
| Description: If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| mndissubm.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndissubm.s | ⊢ 𝑆 = (Base‘𝐻) |
| mndissubm.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndissubm | ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1006 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ⊆ 𝐵) | |
| 2 | simpr2 1007 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 0 ∈ 𝑆) | |
| 3 | mndmgm 13369 | . . . . . . 7 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 4 | mndmgm 13369 | . . . . . . 7 ⊢ (𝐻 ∈ Mnd → 𝐻 ∈ Mgm) | |
| 5 | 3, 4 | anim12i 338 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
| 6 | 5 | ad2antrr 488 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm)) |
| 7 | 3simpb 998 | . . . . . 6 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) | |
| 8 | 7 | ad2antlr 489 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) |
| 9 | simpr 110 | . . . . 5 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) | |
| 10 | mndissubm.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 11 | mndissubm.s | . . . . . 6 ⊢ 𝑆 = (Base‘𝐻) | |
| 12 | 10, 11 | mgmsscl 13308 | . . . . 5 ⊢ (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 13 | 6, 8, 9, 12 | syl3anc 1250 | . . . 4 ⊢ ((((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 14 | 13 | ralrimivva 2590 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆) |
| 15 | mndissubm.z | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 16 | eqid 2207 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 17 | 10, 15, 16 | issubm 13419 | . . . 4 ⊢ (𝐺 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆))) |
| 18 | 17 | ad2antrr 488 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝑆 ∈ (SubMnd‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑎 ∈ 𝑆 ∀𝑏 ∈ 𝑆 (𝑎(+g‘𝐺)𝑏) ∈ 𝑆))) |
| 19 | 1, 2, 14, 18 | mpbir3and 1183 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubMnd‘𝐺)) |
| 20 | 19 | ex 115 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ⊆ wss 3174 × cxp 4691 ↾ cres 4695 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 +gcplusg 13024 0gc0g 13203 Mgmcmgm 13301 Mndcmnd 13363 SubMndcsubmnd 13405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-submnd 13407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |