![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvds2add | GIF version |
Description: If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds2add | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 + 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 996 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) | |
2 | 3simpb 997 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
3 | zaddcl 9357 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
4 | 3 | anim2i 342 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ)) |
5 | 4 | 3impb 1201 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ)) |
6 | zaddcl 9357 | . . 3 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 + 𝑦) ∈ ℤ) | |
7 | 6 | adantl 277 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 + 𝑦) ∈ ℤ) |
8 | zcn 9322 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
9 | zcn 9322 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
10 | zcn 9322 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
11 | adddir 8010 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 + 𝑦) · 𝐾) = ((𝑥 · 𝐾) + (𝑦 · 𝐾))) | |
12 | 8, 9, 10, 11 | syl3an 1291 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 + 𝑦) · 𝐾) = ((𝑥 · 𝐾) + (𝑦 · 𝐾))) |
13 | 12 | 3comr 1213 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 + 𝑦) · 𝐾) = ((𝑥 · 𝐾) + (𝑦 · 𝐾))) |
14 | 13 | 3expb 1206 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 + 𝑦) · 𝐾) = ((𝑥 · 𝐾) + (𝑦 · 𝐾))) |
15 | oveq12 5927 | . . . . 5 ⊢ (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑥 · 𝐾) + (𝑦 · 𝐾)) = (𝑀 + 𝑁)) | |
16 | 14, 15 | sylan9eq 2246 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁)) → ((𝑥 + 𝑦) · 𝐾) = (𝑀 + 𝑁)) |
17 | 16 | ex 115 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑥 + 𝑦) · 𝐾) = (𝑀 + 𝑁))) |
18 | 17 | 3ad2antl1 1161 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝑥 + 𝑦) · 𝐾) = (𝑀 + 𝑁))) |
19 | 1, 2, 5, 7, 18 | dvds2lem 11946 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 + 𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℂcc 7870 + caddc 7875 · cmul 7877 ℤcz 9317 ∥ cdvds 11930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-dvds 11931 |
This theorem is referenced by: dvds2addd 11972 dvdssub2 11978 dvdsadd2b 11983 bezoutlemstep 12134 bezoutlembi 12142 dvdsmulgcd 12162 bezoutr 12169 pythagtriplem19 12420 4sqlem16 12544 lgsquadlem1 15191 |
Copyright terms: Public domain | W3C validator |