ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvds2add GIF version

Theorem dvds2add 11850
Description: If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2add ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โ†’ ๐พ โˆฅ (๐‘€ + ๐‘)))

Proof of Theorem dvds2add
Dummy variables ๐‘ฅ ๐‘ฆ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 996 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค))
2 3simpb 997 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐พ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค))
3 zaddcl 9311 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐‘€ + ๐‘) โˆˆ โ„ค)
43anim2i 342 . . 3 ((๐พ โˆˆ โ„ค โˆง (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค)) โ†’ (๐พ โˆˆ โ„ค โˆง (๐‘€ + ๐‘) โˆˆ โ„ค))
543impb 1201 . 2 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ (๐พ โˆˆ โ„ค โˆง (๐‘€ + ๐‘) โˆˆ โ„ค))
6 zaddcl 9311 . . 3 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ (๐‘ฅ + ๐‘ฆ) โˆˆ โ„ค)
76adantl 277 . 2 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ (๐‘ฅ + ๐‘ฆ) โˆˆ โ„ค)
8 zcn 9276 . . . . . . . 8 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
9 zcn 9276 . . . . . . . 8 (๐‘ฆ โˆˆ โ„ค โ†’ ๐‘ฆ โˆˆ โ„‚)
10 zcn 9276 . . . . . . . 8 (๐พ โˆˆ โ„ค โ†’ ๐พ โˆˆ โ„‚)
11 adddir 7966 . . . . . . . 8 ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘ฆ โˆˆ โ„‚ โˆง ๐พ โˆˆ โ„‚) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐พ) = ((๐‘ฅ ยท ๐พ) + (๐‘ฆ ยท ๐พ)))
128, 9, 10, 11syl3an 1291 . . . . . . 7 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐พ) = ((๐‘ฅ ยท ๐พ) + (๐‘ฆ ยท ๐พ)))
13123comr 1213 . . . . . 6 ((๐พ โˆˆ โ„ค โˆง ๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐พ) = ((๐‘ฅ ยท ๐พ) + (๐‘ฆ ยท ๐พ)))
14133expb 1206 . . . . 5 ((๐พ โˆˆ โ„ค โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐พ) = ((๐‘ฅ ยท ๐พ) + (๐‘ฆ ยท ๐พ)))
15 oveq12 5900 . . . . 5 (((๐‘ฅ ยท ๐พ) = ๐‘€ โˆง (๐‘ฆ ยท ๐พ) = ๐‘) โ†’ ((๐‘ฅ ยท ๐พ) + (๐‘ฆ ยท ๐พ)) = (๐‘€ + ๐‘))
1614, 15sylan9eq 2242 . . . 4 (((๐พ โˆˆ โ„ค โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โˆง ((๐‘ฅ ยท ๐พ) = ๐‘€ โˆง (๐‘ฆ ยท ๐พ) = ๐‘)) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐พ) = (๐‘€ + ๐‘))
1716ex 115 . . 3 ((๐พ โˆˆ โ„ค โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ (((๐‘ฅ ยท ๐พ) = ๐‘€ โˆง (๐‘ฆ ยท ๐พ) = ๐‘) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐พ) = (๐‘€ + ๐‘)))
18173ad2antl1 1161 . 2 (((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โˆง (๐‘ฅ โˆˆ โ„ค โˆง ๐‘ฆ โˆˆ โ„ค)) โ†’ (((๐‘ฅ ยท ๐พ) = ๐‘€ โˆง (๐‘ฆ ยท ๐พ) = ๐‘) โ†’ ((๐‘ฅ + ๐‘ฆ) ยท ๐พ) = (๐‘€ + ๐‘)))
191, 2, 5, 7, 18dvds2lem 11828 1 ((๐พ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค) โ†’ ((๐พ โˆฅ ๐‘€ โˆง ๐พ โˆฅ ๐‘) โ†’ ๐พ โˆฅ (๐‘€ + ๐‘)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆง w3a 980   = wceq 1364   โˆˆ wcel 2160   class class class wbr 4018  (class class class)co 5891  โ„‚cc 7827   + caddc 7832   ยท cmul 7834  โ„คcz 9271   โˆฅ cdvds 11812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-inn 8938  df-n0 9195  df-z 9272  df-dvds 11813
This theorem is referenced by:  dvds2addd  11854  dvdssub2  11860  dvdsadd2b  11865  bezoutlemstep  12016  bezoutlembi  12024  dvdsmulgcd  12044  bezoutr  12051  pythagtriplem19  12300
  Copyright terms: Public domain W3C validator