ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink GIF version

Theorem rebtwn2zlemshrink 10468
Description: Lemma for rebtwn2z 10469. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable groups:   𝐴,𝑚,𝑥   𝑚,𝐽
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rebtwn2zlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1022 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ (ℤ‘2))
2 3simpb 1019 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
3 oveq2 6008 . . . . . . . 8 (𝑤 = 2 → (𝑚 + 𝑤) = (𝑚 + 2))
43breq2d 4094 . . . . . . 7 (𝑤 = 2 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 2)))
54anbi2d 464 . . . . . 6 (𝑤 = 2 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
65rexbidv 2531 . . . . 5 (𝑤 = 2 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
76anbi2d 464 . . . 4 (𝑤 = 2 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)))))
87imbi1d 231 . . 3 (𝑤 = 2 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
9 oveq2 6008 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
109breq2d 4094 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1110anbi2d 464 . . . . . 6 (𝑤 = 𝑘 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1211rexbidv 2531 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1312anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
1413imbi1d 231 . . 3 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
15 oveq2 6008 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1615breq2d 4094 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1716anbi2d 464 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1817rexbidv 2531 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918anbi2d 464 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2019imbi1d 231 . . 3 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
21 oveq2 6008 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2221breq2d 4094 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2322anbi2d 464 . . . . . 6 (𝑤 = 𝐽 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2423rexbidv 2531 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2524anbi2d 464 . . . 4 (𝑤 = 𝐽 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽)))))
2625imbi1d 231 . . 3 (𝑤 = 𝐽 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
27 breq1 4085 . . . . . . 7 (𝑚 = 𝑥 → (𝑚 < 𝐴𝑥 < 𝐴))
28 oveq1 6007 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 2) = (𝑥 + 2))
2928breq2d 4094 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 2) ↔ 𝐴 < (𝑥 + 2)))
3027, 29anbi12d 473 . . . . . 6 (𝑚 = 𝑥 → ((𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
3130cbvrexv 2766 . . . . 5 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3231biimpi 120 . . . 4 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3332adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
34 rebtwn2zlemstep 10467 . . . . . 6 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))
35343expia 1229 . . . . 5 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
3635imdistanda 448 . . . 4 (𝑘 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
3736imim1d 75 . . 3 (𝑘 ∈ (ℤ‘2) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
388, 14, 20, 26, 33, 37uzind4i 9783 . 2 (𝐽 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
391, 2, 38sylc 62 1 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4082  cfv 5317  (class class class)co 6000  cr 7994  1c1 7996   + caddc 7998   < clt 8177  2c2 9157  cz 9442  cuz 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719
This theorem is referenced by:  rebtwn2z  10469
  Copyright terms: Public domain W3C validator