Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink GIF version

Theorem rebtwn2zlemshrink 9814
 Description: Lemma for rebtwn2z 9815. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable groups:   𝐴,𝑚,𝑥   𝑚,𝐽
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rebtwn2zlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 947 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ (ℤ‘2))
2 3simpb 944 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
3 2z 8876 . . 3 2 ∈ ℤ
4 oveq2 5698 . . . . . . . 8 (𝑤 = 2 → (𝑚 + 𝑤) = (𝑚 + 2))
54breq2d 3879 . . . . . . 7 (𝑤 = 2 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 2)))
65anbi2d 453 . . . . . 6 (𝑤 = 2 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
76rexbidv 2392 . . . . 5 (𝑤 = 2 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
87anbi2d 453 . . . 4 (𝑤 = 2 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)))))
98imbi1d 230 . . 3 (𝑤 = 2 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
10 oveq2 5698 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
1110breq2d 3879 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1211anbi2d 453 . . . . . 6 (𝑤 = 𝑘 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1312rexbidv 2392 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1413anbi2d 453 . . . 4 (𝑤 = 𝑘 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
1514imbi1d 230 . . 3 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
16 oveq2 5698 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1716breq2d 3879 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1817anbi2d 453 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918rexbidv 2392 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
2019anbi2d 453 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2120imbi1d 230 . . 3 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
22 oveq2 5698 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2322breq2d 3879 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2423anbi2d 453 . . . . . 6 (𝑤 = 𝐽 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2524rexbidv 2392 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2625anbi2d 453 . . . 4 (𝑤 = 𝐽 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽)))))
2726imbi1d 230 . . 3 (𝑤 = 𝐽 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
28 breq1 3870 . . . . . . 7 (𝑚 = 𝑥 → (𝑚 < 𝐴𝑥 < 𝐴))
29 oveq1 5697 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 2) = (𝑥 + 2))
3029breq2d 3879 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 2) ↔ 𝐴 < (𝑥 + 2)))
3128, 30anbi12d 458 . . . . . 6 (𝑚 = 𝑥 → ((𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
3231cbvrexv 2605 . . . . 5 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3332biimpi 119 . . . 4 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3433adantl 272 . . 3 ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
35 rebtwn2zlemstep 9813 . . . . . 6 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))
36353expia 1148 . . . . 5 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
3736imdistanda 438 . . . 4 (𝑘 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
3837imim1d 75 . . 3 (𝑘 ∈ (ℤ‘2) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
393, 9, 15, 21, 27, 34, 38uzind4i 9179 . 2 (𝐽 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
401, 2, 39sylc 62 1 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 927   = wceq 1296   ∈ wcel 1445  ∃wrex 2371   class class class wbr 3867  ‘cfv 5049  (class class class)co 5690  ℝcr 7446  1c1 7448   + caddc 7450   < clt 7619  2c2 8571  ℤcz 8848  ℤ≥cuz 9118 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-ltadd 7558 This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-2 8579  df-n0 8772  df-z 8849  df-uz 9119 This theorem is referenced by:  rebtwn2z  9815
 Copyright terms: Public domain W3C validator