ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemshrink GIF version

Theorem rebtwn2zlemshrink 10394
Description: Lemma for rebtwn2z 10395. Shrinking the range around the given real number. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemshrink ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Distinct variable groups:   𝐴,𝑚,𝑥   𝑚,𝐽
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rebtwn2zlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1000 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ (ℤ‘2))
2 3simpb 997 . 2 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
3 oveq2 5951 . . . . . . . 8 (𝑤 = 2 → (𝑚 + 𝑤) = (𝑚 + 2))
43breq2d 4055 . . . . . . 7 (𝑤 = 2 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 2)))
54anbi2d 464 . . . . . 6 (𝑤 = 2 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
65rexbidv 2506 . . . . 5 (𝑤 = 2 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))))
76anbi2d 464 . . . 4 (𝑤 = 2 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)))))
87imbi1d 231 . . 3 (𝑤 = 2 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
9 oveq2 5951 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
109breq2d 4055 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1110anbi2d 464 . . . . . 6 (𝑤 = 𝑘 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1211rexbidv 2506 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
1312anbi2d 464 . . . 4 (𝑤 = 𝑘 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
1413imbi1d 231 . . 3 (𝑤 = 𝑘 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
15 oveq2 5951 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1615breq2d 4055 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1716anbi2d 464 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1817rexbidv 2506 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918anbi2d 464 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2019imbi1d 231 . . 3 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
21 oveq2 5951 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2221breq2d 4055 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2322anbi2d 464 . . . . . 6 (𝑤 = 𝐽 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2423rexbidv 2506 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))))
2524anbi2d 464 . . . 4 (𝑤 = 𝐽 → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽)))))
2625imbi1d 231 . . 3 (𝑤 = 𝐽 → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) ↔ ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
27 breq1 4046 . . . . . . 7 (𝑚 = 𝑥 → (𝑚 < 𝐴𝑥 < 𝐴))
28 oveq1 5950 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 2) = (𝑥 + 2))
2928breq2d 4055 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 2) ↔ 𝐴 < (𝑥 + 2)))
3027, 29anbi12d 473 . . . . . 6 (𝑚 = 𝑥 → ((𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
3130cbvrexv 2738 . . . . 5 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) ↔ ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3231biimpi 120 . . . 4 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
3332adantl 277 . . 3 ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 2))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
34 rebtwn2zlemstep 10393 . . . . . 6 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))
35343expia 1207 . . . . 5 ((𝑘 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))))
3635imdistanda 448 . . . 4 (𝑘 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘)))))
3736imim1d 75 . . 3 (𝑘 ∈ (ℤ‘2) → (((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))))
388, 14, 20, 26, 33, 37uzind4i 9712 . 2 (𝐽 ∈ (ℤ‘2) → ((𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2))))
391, 2, 38sylc 62 1 ((𝐴 ∈ ℝ ∧ 𝐽 ∈ (ℤ‘2) ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴𝐴 < (𝑥 + 2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1372  wcel 2175  wrex 2484   class class class wbr 4043  cfv 5270  (class class class)co 5943  cr 7923  1c1 7925   + caddc 7927   < clt 8106  2c2 9086  cz 9371  cuz 9647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648
This theorem is referenced by:  rebtwn2z  10395
  Copyright terms: Public domain W3C validator