ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4i GIF version

Theorem 3sstr4i 3225
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4.1 𝐴𝐵
3sstr4.2 𝐶 = 𝐴
3sstr4.3 𝐷 = 𝐵
Assertion
Ref Expression
3sstr4i 𝐶𝐷

Proof of Theorem 3sstr4i
StepHypRef Expression
1 3sstr4.1 . 2 𝐴𝐵
2 3sstr4.2 . . 3 𝐶 = 𝐴
3 3sstr4.3 . . 3 𝐷 = 𝐵
42, 3sseq12i 3212 . 2 (𝐶𝐷𝐴𝐵)
51, 4mpbir 146 1 𝐶𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  undif2ss  3527  pwsnss  3834  iinuniss  4000  brab2a  4717  relopabiv  4790  rncoss  4937  imassrn  5021  rnin  5080  inimass  5087  imadiflem  5338  imainlem  5340  ssoprab2i  6015  npsspw  7555  axresscn  7944  mpomulf  8033
  Copyright terms: Public domain W3C validator