| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4i | GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | sseq12i 3211 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: undif2ss 3526 pwsnss 3833 iinuniss 3999 brab2a 4716 relopabiv 4789 rncoss 4936 imassrn 5020 rnin 5079 inimass 5086 imadiflem 5337 imainlem 5339 ssoprab2i 6011 npsspw 7538 axresscn 7927 mpomulf 8016 |
| Copyright terms: Public domain | W3C validator |