| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4i | GIF version | ||
| Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4.1 | ⊢ 𝐴 ⊆ 𝐵 |
| 3sstr4.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4i | ⊢ 𝐶 ⊆ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4.1 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | 3sstr4.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3sstr4.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | sseq12i 3225 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ 𝐶 ⊆ 𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 |
| This theorem is referenced by: undif2ss 3540 pwsnss 3850 iinuniss 4016 brab2a 4736 relopabiv 4809 rncoss 4958 imassrn 5042 rnin 5101 inimass 5108 imadiflem 5362 imainlem 5364 ssoprab2i 6047 npsspw 7604 axresscn 7993 mpomulf 8082 |
| Copyright terms: Public domain | W3C validator |