![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablgrp | GIF version |
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 13358 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Grpcgrp 13072 CMndccmn 13354 Abelcabl 13355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-abl 13357 |
This theorem is referenced by: ablgrpd 13360 ablinvadd 13380 ablsub2inv 13381 ablsubadd 13382 ablsub4 13383 abladdsub4 13384 abladdsub 13385 ablpncan2 13386 ablpncan3 13387 ablsubsub 13388 ablsubsub4 13389 ablpnpcan 13390 ablnncan 13391 ablnnncan 13393 ablnnncan1 13394 ablsubsub23 13395 ghmabl 13398 invghm 13399 eqgabl 13400 ablressid 13405 rnglz 13441 rngpropd 13451 |
Copyright terms: Public domain | W3C validator |