| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablgrp | GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 13833 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Grpcgrp 13541 CMndccmn 13829 Abelcabl 13830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-abl 13832 |
| This theorem is referenced by: ablgrpd 13835 ablinvadd 13855 ablsub2inv 13856 ablsubadd 13857 ablsub4 13858 abladdsub4 13859 abladdsub 13860 ablpncan2 13861 ablpncan3 13862 ablsubsub 13863 ablsubsub4 13864 ablpnpcan 13865 ablnncan 13866 ablnnncan 13868 ablnnncan1 13869 ablsubsub23 13870 ghmabl 13873 invghm 13874 eqgabl 13875 ablressid 13880 rnglz 13916 rngpropd 13926 |
| Copyright terms: Public domain | W3C validator |