![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablgrp | GIF version |
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 13361 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simplbi 274 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Grpcgrp 13075 CMndccmn 13357 Abelcabl 13358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-abl 13360 |
This theorem is referenced by: ablgrpd 13363 ablinvadd 13383 ablsub2inv 13384 ablsubadd 13385 ablsub4 13386 abladdsub4 13387 abladdsub 13388 ablpncan2 13389 ablpncan3 13390 ablsubsub 13391 ablsubsub4 13392 ablpnpcan 13393 ablnncan 13394 ablnnncan 13396 ablnnncan1 13397 ablsubsub23 13398 ghmabl 13401 invghm 13402 eqgabl 13403 ablressid 13408 rnglz 13444 rngpropd 13454 |
Copyright terms: Public domain | W3C validator |