| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ablgrp | GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 13791 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 274 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Grpcgrp 13499 CMndccmn 13787 Abelcabl 13788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-abl 13790 |
| This theorem is referenced by: ablgrpd 13793 ablinvadd 13813 ablsub2inv 13814 ablsubadd 13815 ablsub4 13816 abladdsub4 13817 abladdsub 13818 ablpncan2 13819 ablpncan3 13820 ablsubsub 13821 ablsubsub4 13822 ablpnpcan 13823 ablnncan 13824 ablnnncan 13826 ablnnncan1 13827 ablsubsub23 13828 ghmabl 13831 invghm 13832 eqgabl 13833 ablressid 13838 rnglz 13874 rngpropd 13884 |
| Copyright terms: Public domain | W3C validator |