| Intuitionistic Logic Explorer Theorem List (p. 131 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-ndx 13001 | Define the structure component index extractor. See Theorem ndxarg 13021 to understand its purpose. The restriction to ℕ ensures that ndx is a set. The restriction to some set is necessary since I is a proper class. In principle, we could have chosen ℂ or (if we revise all structure component definitions such as df-base 13004) another set such as the set of finite ordinals ω (df-iom 4660). (Contributed by NM, 4-Sep-2011.) |
| ⊢ ndx = ( I ↾ ℕ) | ||
| Definition | df-slot 13002* |
Define the slot extractor for extensible structures. The class
Slot 𝐴 is a function whose argument can be
any set, although it is
meaningful only if that set is a member of an extensible structure (such
as a partially ordered set or a group).
Note that Slot 𝐴 is implemented as "evaluation at 𝐴". That is, (Slot 𝐴‘𝑆) is defined to be (𝑆‘𝐴), where 𝐴 will typically be a small nonzero natural number. Each extensible structure 𝑆 is a function defined on specific natural number "slots", and this function extracts the value at a particular slot. The special "structure" ndx, defined as the identity function restricted to ℕ, can be used to extract the number 𝐴 from a slot, since (Slot 𝐴‘ndx) = 𝐴 (see ndxarg 13021). This is typically used to refer to the number of a slot when defining structures without having to expose the detail of what that number is (for instance, we use the expression (Base‘ndx) in theorems and proofs instead of its value 1). The class Slot cannot be defined as (𝑥 ∈ V ↦ (𝑓 ∈ V ↦ (𝑓‘𝑥))) because each Slot 𝐴 is a function on the proper class V so is itself a proper class, and the values of functions are sets (fvex 5623). It is necessary to allow proper classes as values of Slot 𝐴 since for instance the class of all (base sets of) groups is proper. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥‘𝐴)) | ||
| Theorem | sloteq 13003 | Equality theorem for the Slot construction. The converse holds if 𝐴 (or 𝐵) is a set. (Contributed by BJ, 27-Dec-2021.) |
| ⊢ (𝐴 = 𝐵 → Slot 𝐴 = Slot 𝐵) | ||
| Definition | df-base 13004 | Define the base set (also called underlying set, ground set, carrier set, or carrier) extractor for extensible structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ Base = Slot 1 | ||
| Definition | df-sets 13005* | Set a component of an extensible structure. This function is useful for taking an existing structure and "overriding" one of its components. For example, df-iress 13006 adjusts the base set to match its second argument, which has the effect of making subgroups, subspaces, subrings etc. from the original structures. (Contributed by Mario Carneiro, 1-Dec-2014.) |
| ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) | ||
| Definition | df-iress 13006* |
Define a multifunction restriction operator for extensible structures,
which can be used to turn statements about rings into statements about
subrings, modules into submodules, etc. This definition knows nothing
about individual structures and merely truncates the Base set while
leaving operators alone; individual kinds of structures will need to
handle this behavior, by ignoring operators' values outside the range,
defining a function using the base set and applying that, or explicitly
truncating the slot before use.
(Credit for this operator, as well as the 2023 modification for iset.mm, goes to Mario Carneiro.) (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 7-Oct-2023.) |
| ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉)) | ||
| Theorem | brstruct 13007 | The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ Rel Struct | ||
| Theorem | isstruct2im 13008 | The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
| ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | ||
| Theorem | isstruct2r 13009 | The property of being a structure with components in (1st ‘𝑋)...(2nd ‘𝑋). (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
| ⊢ (((𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅})) ∧ (𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (...‘𝑋))) → 𝐹 Struct 𝑋) | ||
| Theorem | structex 13010 | A structure is a set. (Contributed by AV, 10-Nov-2021.) |
| ⊢ (𝐺 Struct 𝑋 → 𝐺 ∈ V) | ||
| Theorem | structn0fun 13011 | A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
| ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | ||
| Theorem | isstructim 13012 | The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
| ⊢ (𝐹 Struct 〈𝑀, 𝑁〉 → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (𝑀...𝑁))) | ||
| Theorem | isstructr 13013 | The property of being a structure with components in 𝑀...𝑁. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 18-Jan-2023.) |
| ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ≤ 𝑁) ∧ (Fun (𝐹 ∖ {∅}) ∧ 𝐹 ∈ 𝑉 ∧ dom 𝐹 ⊆ (𝑀...𝑁))) → 𝐹 Struct 〈𝑀, 𝑁〉) | ||
| Theorem | structcnvcnv 13014 | Two ways to express the relational part of a structure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) | ||
| Theorem | structfung 13015 | The converse of the converse of a structure is a function. Closed form of structfun 13016. (Contributed by AV, 12-Nov-2021.) |
| ⊢ (𝐹 Struct 𝑋 → Fun ◡◡𝐹) | ||
| Theorem | structfun 13016 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof shortened by AV, 12-Nov-2021.) |
| ⊢ 𝐹 Struct 𝑋 ⇒ ⊢ Fun ◡◡𝐹 | ||
| Theorem | structfn 13017 | Convert between two kinds of structure closure. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐹 Struct 〈𝑀, 𝑁〉 ⇒ ⊢ (Fun ◡◡𝐹 ∧ dom 𝐹 ⊆ (1...𝑁)) | ||
| Theorem | strnfvnd 13018 | Deduction version of strnfvn 13019. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) | ||
| Theorem | strnfvn 13019 |
Value of a structure component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 13004) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 13043. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.) |
| ⊢ 𝑆 ∈ V & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) | ||
| Theorem | strfvssn 13020 | A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) | ||
| Theorem | ndxarg 13021 | Get the numeric argument from a defined structure component extractor such as df-base 13004. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸‘ndx) = 𝑁 | ||
| Theorem | ndxid 13022 |
A structure component extractor is defined by its own index. This
theorem, together with strslfv 13043 below, is useful for avoiding direct
reference to the hard-coded numeric index in component extractor
definitions, such as the 1 in df-base 13004, making it easier to change
should the need arise.
(Contributed by NM, 19-Oct-2012.) (Revised by Mario Carneiro, 6-Oct-2013.) (Proof shortened by BJ, 27-Dec-2021.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ 𝐸 = Slot (𝐸‘ndx) | ||
| Theorem | ndxslid 13023 | A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 13043. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | ||
| Theorem | slotslfn 13024 | A slot is a function on sets, treated as structures. (Contributed by Mario Carneiro, 22-Sep-2015.) (Revised by Jim Kingdon, 10-Feb-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ 𝐸 Fn V | ||
| Theorem | slotex 13025 | Existence of slot value. A corollary of slotslfn 13024. (Contributed by Jim Kingdon, 12-Feb-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐸‘𝐴) ∈ V) | ||
| Theorem | strndxid 13026 | The value of a structure component extractor is the value of the corresponding slot of the structure. (Contributed by AV, 13-Mar-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = (𝐸‘𝑆)) | ||
| Theorem | reldmsets 13027 | The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
| ⊢ Rel dom sSet | ||
| Theorem | setsvalg 13028 | Value of the structure replacement function. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝑆 sSet 𝐴) = ((𝑆 ↾ (V ∖ dom {𝐴})) ∪ {𝐴})) | ||
| Theorem | setsvala 13029 | Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 20-Jan-2023.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | ||
| Theorem | setsex 13030 | Applying the structure replacement function yields a set. (Contributed by Jim Kingdon, 22-Jan-2023.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) ∈ V) | ||
| Theorem | strsetsid 13031 | Value of the structure replacement function. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝜑 → 𝑆 Struct 〈𝑀, 𝑁〉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) | ||
| Theorem | fvsetsid 13032 | The value of the structure replacement function for its first argument is its second argument. (Contributed by SO, 12-Jul-2018.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → ((𝐹 sSet 〈𝑋, 𝑌〉)‘𝑋) = 𝑌) | ||
| Theorem | setsfun 13033 | A structure with replacement is a function if the original structure is a function. (Contributed by AV, 7-Jun-2021.) |
| ⊢ (((𝐺 ∈ 𝑉 ∧ Fun 𝐺) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun (𝐺 sSet 〈𝐼, 𝐸〉)) | ||
| Theorem | setsfun0 13034 | A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 13033 is useful for proofs based on isstruct2r 13009 which requires Fun (𝐹 ∖ {∅}) for 𝐹 to be an extensible structure. (Contributed by AV, 7-Jun-2021.) |
| ⊢ (((𝐺 ∈ 𝑉 ∧ Fun (𝐺 ∖ {∅})) ∧ (𝐼 ∈ 𝑈 ∧ 𝐸 ∈ 𝑊)) → Fun ((𝐺 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | ||
| Theorem | setsn0fun 13035 | The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → Fun ((𝑆 sSet 〈𝐼, 𝐸〉) ∖ {∅})) | ||
| Theorem | setsresg 13036 | The structure replacement function does not affect the value of 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝐵 ∈ 𝑋) → ((𝑆 sSet 〈𝐴, 𝐵〉) ↾ (V ∖ {𝐴})) = (𝑆 ↾ (V ∖ {𝐴}))) | ||
| Theorem | setsabsd 13037 | Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Jim Kingdon, 22-Jan-2023.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐵〉) sSet 〈𝐴, 𝐶〉) = (𝑆 sSet 〈𝐴, 𝐶〉)) | ||
| Theorem | setscom 13038 | Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑊 ∧ 𝐷 ∈ 𝑋)) → ((𝑆 sSet 〈𝐴, 𝐶〉) sSet 〈𝐵, 𝐷〉) = ((𝑆 sSet 〈𝐵, 𝐷〉) sSet 〈𝐴, 𝐶〉)) | ||
| Theorem | setscomd 13039 | Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑌) & ⊢ (𝜑 → 𝐵 ∈ 𝑍) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝑆 sSet 〈𝐴, 𝐶〉) sSet 〈𝐵, 𝐷〉) = ((𝑆 sSet 〈𝐵, 𝐷〉) sSet 〈𝐴, 𝐶〉)) | ||
| Theorem | strslfvd 13040 | Deduction version of strslfv 13043. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strslfv2d 13041 | Deduction version of strslfv 13043. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun ◡◡𝑆) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strslfv2 13042 | A variation on strslfv 13043 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| ⊢ 𝑆 ∈ V & ⊢ Fun ◡◡𝑆 & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strslfv 13043 | Extract a structure component 𝐶 (such as the base set) from a structure 𝑆 with a component extractor 𝐸 (such as the base set extractor df-base 13004). By virtue of ndxslid 13023, this can be done without having to refer to the hard-coded numeric index of 𝐸. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| ⊢ 𝑆 Struct 𝑋 & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 ⇒ ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) | ||
| Theorem | strslfv3 13044 | Variant on strslfv 13043 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| ⊢ (𝜑 → 𝑈 = 𝑆) & ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ 𝐴 = (𝐸‘𝑈) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
| Theorem | strslssd 13045 | Deduction version of strslss 13046. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑇) & ⊢ (𝜑 → 𝑆 ⊆ 𝑇) & ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸‘𝑇) = (𝐸‘𝑆)) | ||
| Theorem | strslss 13046 | Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.) |
| ⊢ 𝑇 ∈ V & ⊢ Fun 𝑇 & ⊢ 𝑆 ⊆ 𝑇 & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ⇒ ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) | ||
| Theorem | strsl0 13047 | All components of the empty set are empty sets. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 31-Jan-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ ∅ = (𝐸‘∅) | ||
| Theorem | base0 13048 | The base set of the empty structure. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| ⊢ ∅ = (Base‘∅) | ||
| Theorem | setsslid 13049 | Value of the structure replacement function at a replaced index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 = (𝐸‘(𝑊 sSet 〈(𝐸‘ndx), 𝐶〉))) | ||
| Theorem | setsslnid 13050 | Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
| ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠ 𝐷 & ⊢ 𝐷 ∈ ℕ ⇒ ⊢ ((𝑊 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → (𝐸‘𝑊) = (𝐸‘(𝑊 sSet 〈𝐷, 𝐶〉))) | ||
| Theorem | baseval 13051 | Value of the base set extractor. (Normally it is preferred to work with (Base‘ndx) rather than the hard-coded 1 in order to make structure theorems portable. This is an example of how to obtain it when needed.) (New usage is discouraged.) (Contributed by NM, 4-Sep-2011.) |
| ⊢ 𝐾 ∈ V ⇒ ⊢ (Base‘𝐾) = (𝐾‘1) | ||
| Theorem | baseid 13052 | Utility theorem: index-independent form of df-base 13004. (Contributed by NM, 20-Oct-2012.) |
| ⊢ Base = Slot (Base‘ndx) | ||
| Theorem | basendx 13053 |
Index value of the base set extractor.
Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail. It is generally sufficient to work with (Base‘ndx) and use theorems such as baseid 13052 and basendxnn 13054. The main circumstance in which it is necessary to look at indices directly is when showing that a set of indices are disjoint, in proofs such as lmodstrd 13163. Although we have a few theorems such as basendxnplusgndx 13124, we do not intend to add such theorems for every pair of indices (which would be quadradically many in the number of indices). (New usage is discouraged.) (Contributed by Mario Carneiro, 2-Aug-2013.) |
| ⊢ (Base‘ndx) = 1 | ||
| Theorem | basendxnn 13054 | The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) |
| ⊢ (Base‘ndx) ∈ ℕ | ||
| Theorem | bassetsnn 13055 | The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.) |
| ⊢ (𝜑 → 𝑆 Struct 𝑋) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑆) ⇒ ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) | ||
| Theorem | baseslid 13056 | The base set extractor is a slot. (Contributed by Jim Kingdon, 31-Jan-2023.) |
| ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | ||
| Theorem | basfn 13057 | The base set extractor is a function on V. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ Base Fn V | ||
| Theorem | basmex 13058 | A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 18-Nov-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝐵 → 𝐺 ∈ V) | ||
| Theorem | basmexd 13059 | A structure whose base is inhabited is a set. (Contributed by Jim Kingdon, 28-Nov-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ V) | ||
| Theorem | basm 13060* | A structure whose base is inhabited is inhabited. (Contributed by Jim Kingdon, 14-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝐵 → ∃𝑗 𝑗 ∈ 𝐺) | ||
| Theorem | relelbasov 13061 | Utility theorem: reverse closure for any structure defined as a two-argument function. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ Rel dom 𝑂 & ⊢ Rel 𝑂 & ⊢ 𝑆 = (𝑋𝑂𝑌) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝑋 ∈ V ∧ 𝑌 ∈ V)) | ||
| Theorem | reldmress 13062 | The structure restriction is a proper operator, so it can be used with ovprc1 6011. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ Rel dom ↾s | ||
| Theorem | ressvalsets 13063 | Value of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
| ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) | ||
| Theorem | ressex 13064 | Existence of structure restriction. (Contributed by Jim Kingdon, 16-Jan-2025.) |
| ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → (𝑊 ↾s 𝐴) ∈ V) | ||
| Theorem | ressval2 13065 | Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ 𝐵)〉)) | ||
| Theorem | ressbasd 13066 | Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.) (Proof shortened by AV, 7-Nov-2024.) |
| ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) | ||
| Theorem | ressbas2d 13067 | Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = (Base‘𝑅)) | ||
| Theorem | ressbasssd 13068 | The base set of a restriction is a subset of the base set of the original structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (𝜑 → 𝑅 = (𝑊 ↾s 𝐴)) & ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (Base‘𝑅) ⊆ 𝐵) | ||
| Theorem | ressbasid 13069 | The trivial structure restriction leaves the base set unchanged. (Contributed by Jim Kingdon, 29-Apr-2025.) |
| ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (Base‘(𝑊 ↾s 𝐵)) = 𝐵) | ||
| Theorem | strressid 13070 | Behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 17-Jan-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝑊 Struct 〈𝑀, 𝑁〉) & ⊢ (𝜑 → Fun 𝑊) & ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝑊) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐵) = 𝑊) | ||
| Theorem | ressval3d 13071 | Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) (Revised by Jim Kingdon, 17-Jan-2025.) |
| ⊢ 𝑅 = (𝑆 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘ndx) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → Fun 𝑆) & ⊢ (𝜑 → 𝐸 ∈ dom 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → 𝑅 = (𝑆 sSet 〈𝐸, 𝐴〉)) | ||
| Theorem | resseqnbasd 13072 | The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 19-Oct-2024.) |
| ⊢ 𝑅 = (𝑊 ↾s 𝐴) & ⊢ 𝐶 = (𝐸‘𝑊) & ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) & ⊢ (𝐸‘ndx) ≠ (Base‘ndx) & ⊢ (𝜑 → 𝑊 ∈ 𝑋) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐶 = (𝐸‘𝑅)) | ||
| Theorem | ressinbasd 13073 | Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝑊 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝐴) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
| Theorem | ressressg 13074 | Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝑊 ∈ 𝑍) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s (𝐴 ∩ 𝐵))) | ||
| Theorem | ressabsg 13075 | Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑌) → ((𝑊 ↾s 𝐴) ↾s 𝐵) = (𝑊 ↾s 𝐵)) | ||
| Syntax | cplusg 13076 | Extend class notation with group (addition) operation. |
| class +g | ||
| Syntax | cmulr 13077 | Extend class notation with ring multiplication. |
| class .r | ||
| Syntax | cstv 13078 | Extend class notation with involution. |
| class *𝑟 | ||
| Syntax | csca 13079 | Extend class notation with scalar field. |
| class Scalar | ||
| Syntax | cvsca 13080 | Extend class notation with scalar product. |
| class ·𝑠 | ||
| Syntax | cip 13081 | Extend class notation with Hermitian form (inner product). |
| class ·𝑖 | ||
| Syntax | cts 13082 | Extend class notation with the topology component of a topological space. |
| class TopSet | ||
| Syntax | cple 13083 | Extend class notation with "less than or equal to" for posets. |
| class le | ||
| Syntax | coc 13084 | Extend class notation with the class of orthocomplementation extractors. |
| class oc | ||
| Syntax | cds 13085 | Extend class notation with the metric space distance function. |
| class dist | ||
| Syntax | cunif 13086 | Extend class notation with the uniform structure. |
| class UnifSet | ||
| Syntax | chom 13087 | Extend class notation with the hom-set structure. |
| class Hom | ||
| Syntax | cco 13088 | Extend class notation with the composition operation. |
| class comp | ||
| Definition | df-plusg 13089 | Define group operation. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ +g = Slot 2 | ||
| Definition | df-mulr 13090 | Define ring multiplication. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ .r = Slot 3 | ||
| Definition | df-starv 13091 | Define the involution function of a *-ring. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ *𝑟 = Slot 4 | ||
| Definition | df-sca 13092 | Define scalar field component of a vector space 𝑣. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ Scalar = Slot 5 | ||
| Definition | df-vsca 13093 | Define scalar product. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ·𝑠 = Slot 6 | ||
| Definition | df-ip 13094 | Define Hermitian form (inner product). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ·𝑖 = Slot 8 | ||
| Definition | df-tset 13095 | Define the topology component of a topological space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ TopSet = Slot 9 | ||
| Definition | df-ple 13096 | Define "less than or equal to" ordering extractor for posets and related structures. We use ;10 for the index to avoid conflict with 1 through 9 used for other purposes. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ le = Slot ;10 | ||
| Definition | df-ocomp 13097 | Define the orthocomplementation extractor for posets and related structures. (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ oc = Slot ;11 | ||
| Definition | df-ds 13098 | Define the distance function component of a metric space (structure). (Contributed by NM, 4-Sep-2011.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ dist = Slot ;12 | ||
| Definition | df-unif 13099 | Define the uniform structure component of a uniform space. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ UnifSet = Slot ;13 | ||
| Definition | df-hom 13100 | Define the hom-set component of a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ Hom = Slot ;14 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |