HomeHome Intuitionistic Logic Explorer
Theorem List (p. 131 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13001-13100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxmettri2 13001 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmettri2 13002 Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
 
Theoremxmet0 13003 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theoremmet0 13004 The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = 0)
 
Theoremxmetge0 13005 The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theoremmetge0 13006 The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theoremxmetlecl 13007 Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremxmetsym 13008 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theoremxmetpsmet 13009 An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.)
(𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋))
 
Theoremxmettpos 13010 The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷)
 
Theoremmetsym 13011 The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theoremxmettri 13012 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmettri 13013 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))
 
Theoremxmettri3 13014 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
 
Theoremmettri3 13015 Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶)))
 
Theoremxmetrtri 13016 One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵))
 
Theoremmetrtri 13017 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 21-Apr-2023.)
((𝐷 ∈ (Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
 
Theoremmetn0 13018 A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅))
 
Theoremxmetres2 13019 Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
 
Theoremmetreslem 13020 Lemma for metres 13023. (Contributed by Mario Carneiro, 24-Aug-2015.)
(dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
 
Theoremmetres2 13021 Lemma for metres 13023. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))
 
Theoremxmetres 13022 A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))
 
Theoremmetres 13023 A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))
 
Theorem0met 13024 The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
∅ ∈ (Met‘∅)
 
8.2.3  Metric space balls
 
Theoremblfvalps 13025* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
 
Theoremblfval 13026* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry Arnoux, 11-Feb-2018.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
 
Theoremblex 13027 A ball is a set. (Contributed by Jim Kingdon, 4-May-2023.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)
 
Theoremblvalps 13028* The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
 
Theoremblval 13029* The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
 
Theoremelblps 13030 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
 
Theoremelbl 13031 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
 
Theoremelbl2ps 13032 Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
 
Theoremelbl2 13033 Membership in a ball. (Contributed by NM, 9-Mar-2007.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
 
Theoremelbl3ps 13034 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
 
Theoremelbl3 13035 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
 
Theoremblcomps 13036 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅)))
 
Theoremblcom 13037 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅)))
 
Theoremxblpnfps 13038 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremxblpnf 13039 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremblpnf 13040 The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑃(ball‘𝐷)+∞) = 𝑋)
 
Theorembldisj 13041 Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)
 
Theoremblgt0 13042 A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
 
Theorembl2in 13043 Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
 
Theoremxblss2ps 13044 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13047 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝜑𝐷 ∈ (PsMet‘𝑋))    &   (𝜑𝑃𝑋)    &   (𝜑𝑄𝑋)    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝑆 ∈ ℝ*)    &   (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)    &   (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))       (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremxblss2 13045 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13047 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝜑𝐷 ∈ (∞Met‘𝑋))    &   (𝜑𝑃𝑋)    &   (𝜑𝑄𝑋)    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝑆 ∈ ℝ*)    &   (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)    &   (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))       (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblss2ps 13046 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblss2 13047 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblhalf 13048 A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
(((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))
 
Theoremblfps 13049 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
 
Theoremblf 13050 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
 
Theoremblrnps 13051* Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
 
Theoremblrn 13052* Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
 
Theoremxblcntrps 13053 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremxblcntr 13054 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremblcntrps 13055 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremblcntr 13056 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremxblm 13057* A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅))
 
Theorembln0 13058 A ball is not empty. It is also inhabited, as seen at blcntr 13056. (Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ≠ ∅)
 
Theoremblelrnps 13059 A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
 
Theoremblelrn 13060 A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
 
Theoremblssm 13061 A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
 
Theoremunirnblps 13062 The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
 
Theoremunirnbl 13063 The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
 
Theoremblininf 13064 The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )))
 
Theoremssblps 13065 The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))
 
Theoremssbl 13066 The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))
 
Theoremblssps 13067* Any point 𝑃 in a ball 𝐵 can be centered in another ball that is a subset of 𝐵. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
 
Theoremblss 13068* Any point 𝑃 in a ball 𝐵 can be centered in another ball that is a subset of 𝐵. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
 
Theoremblssexps 13069* Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
 
Theoremblssex 13070* Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
 
Theoremssblex 13071* A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
 
Theoremblin2 13072* Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
 
Theoremblbas 13073 The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
(𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
 
Theoremblres 13074 A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
𝐶 = (𝐷 ↾ (𝑌 × 𝑌))       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))
 
Theoremxmeterval 13075 Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
 
Theoremxmeter 13076 The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)
 
Theoremxmetec 13077 The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))
 
Theoremblssec 13078 A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 13066 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] )
 
Theoremblpnfctr 13079 The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))
 
Theoremxmetresbl 13080 An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 13077, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +∞ from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
𝐵 = (𝑃(ball‘𝐷)𝑅)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))
 
8.2.4  Open sets of a metric space
 
Theoremmopnrel 13081 The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Rel MetOpen
 
Theoremmopnval 13082 An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 13084, the open sets of a metric space form a topology 𝐽, whose base set is 𝐽 by mopnuni 13085. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
 
Theoremmopntopon 13083 The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
 
Theoremmopntop 13084 The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
 
Theoremmopnuni 13085 The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
 
Theoremelmopn 13086* The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴))))
 
Theoremmopnfss 13087 The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ⊆ 𝒫 𝑋)
 
Theoremmopnm 13088 The base set of a metric space is open. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝑋𝐽)
 
Theoremelmopn2 13089* A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
 
Theoremmopnss 13090 An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006.)
𝐽 = (MetOpen‘𝐷)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
 
Theoremisxms 13091 Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
 
Theoremisxms2 13092 Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
 
Theoremisms 13093 Express the predicate "𝑋, 𝐷 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)))
 
Theoremisms2 13094 Express the predicate "𝑋, 𝐷 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
 
Theoremxmstopn 13095 The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
 
Theoremmstopn 13096 The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ MetSp → 𝐽 = (MetOpen‘𝐷))
 
Theoremxmstps 13097 An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
 
Theoremmsxms 13098 A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
 
Theoremmstps 13099 A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ MetSp → 𝑀 ∈ TopSp)
 
Theoremxmsxmet 13100 The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))       (𝑀 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >