Theorem List for Intuitionistic Logic Explorer - 13001-13100 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | basendxnplusgndx 13001 |
The slot for the base set is not the slot for the group operation in an
extensible structure. (Contributed by AV, 14-Nov-2021.)
|
| ⊢ (Base‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | grpstrg 13002 |
A constructed group is a structure on 1...2.
(Contributed by
Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐺 Struct 〈1, 2〉) |
| |
| Theorem | grpbaseg 13003 |
The base set of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → 𝐵 = (Base‘𝐺)) |
| |
| Theorem | grpplusgg 13004 |
The operation of a constructed group. (Contributed by Mario Carneiro,
2-Aug-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), +
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊) → + =
(+g‘𝐺)) |
| |
| Theorem | ressplusgd 13005 |
+g is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉)
& ⊢ (𝜑 → 𝐺 ∈ 𝑊) ⇒ ⊢ (𝜑 → + =
(+g‘𝐻)) |
| |
| Theorem | mulrndx 13006 |
Index value of the df-mulr 12967 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (.r‘ndx) =
3 |
| |
| Theorem | mulridx 13007 |
Utility theorem: index-independent form of df-mulr 12967. (Contributed by
Mario Carneiro, 8-Jun-2013.)
|
| ⊢ .r = Slot
(.r‘ndx) |
| |
| Theorem | mulrslid 13008 |
Slot property of .r. (Contributed by Jim
Kingdon, 3-Feb-2023.)
|
| ⊢ (.r = Slot
(.r‘ndx) ∧ (.r‘ndx) ∈
ℕ) |
| |
| Theorem | plusgndxnmulrndx 13009 |
The slot for the group (addition) operation is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 16-Feb-2020.)
|
| ⊢ (+g‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | basendxnmulrndx 13010 |
The slot for the base set is not the slot for the ring (multiplication)
operation in an extensible structure. (Contributed by AV,
16-Feb-2020.)
|
| ⊢ (Base‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | rngstrg 13011 |
A constructed ring is a structure. (Contributed by Mario Carneiro,
28-Sep-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝑅 Struct 〈1, 3〉) |
| |
| Theorem | rngbaseg 13012 |
The base set of a constructed ring. (Contributed by Mario Carneiro,
2-Oct-2013.) (Revised by Jim Kingdon, 3-Feb-2023.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | rngplusgg 13013 |
The additive operation of a constructed ring. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → + =
(+g‘𝑅)) |
| |
| Theorem | rngmulrg 13014 |
The multiplicative operation of a constructed ring. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
30-Apr-2015.)
|
| ⊢ 𝑅 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), ·
〉} ⇒ ⊢ ((𝐵 ∈ 𝑉 ∧ + ∈ 𝑊 ∧ · ∈ 𝑋) → · =
(.r‘𝑅)) |
| |
| Theorem | starvndx 13015 |
Index value of the df-starv 12968 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (*𝑟‘ndx) =
4 |
| |
| Theorem | starvid 13016 |
Utility theorem: index-independent form of df-starv 12968. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ *𝑟 = Slot
(*𝑟‘ndx) |
| |
| Theorem | starvslid 13017 |
Slot property of *𝑟. (Contributed
by Jim Kingdon, 4-Feb-2023.)
|
| ⊢ (*𝑟 = Slot
(*𝑟‘ndx) ∧ (*𝑟‘ndx)
∈ ℕ) |
| |
| Theorem | starvndxnbasendx 13018 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | starvndxnplusgndx 13019 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | starvndxnmulrndx 13020 |
The slot for the involution function is not the slot for the base set in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (*𝑟‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | ressmulrg 13021 |
.r is unaffected by restriction.
(Contributed by Stefan O'Rear,
27-Nov-2014.)
|
| ⊢ 𝑆 = (𝑅 ↾s 𝐴)
& ⊢ · =
(.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · =
(.r‘𝑆)) |
| |
| Theorem | srngstrd 13022 |
A constructed star ring is a structure. (Contributed by Mario Carneiro,
18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝑅 Struct 〈1, 4〉) |
| |
| Theorem | srngbased 13023 |
The base set of a constructed star ring. (Contributed by Mario
Carneiro, 18-Nov-2013.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| |
| Theorem | srngplusgd 13024 |
The addition operation of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.) (Revised by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → + =
(+g‘𝑅)) |
| |
| Theorem | srngmulrd 13025 |
The multiplication operation of a constructed star ring. (Contributed
by Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → · =
(.r‘𝑅)) |
| |
| Theorem | srnginvld 13026 |
The involution function of a constructed star ring. (Contributed by
Mario Carneiro, 20-Jun-2015.)
|
| ⊢ 𝑅 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), · 〉} ∪
{〈(*𝑟‘ndx), ∗
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → · ∈ 𝑋) & ⊢ (𝜑 → ∗ ∈ 𝑌)
⇒ ⊢ (𝜑 → ∗ =
(*𝑟‘𝑅)) |
| |
| Theorem | scandx 13027 |
Index value of the df-sca 12969 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (Scalar‘ndx) = 5 |
| |
| Theorem | scaid 13028 |
Utility theorem: index-independent form of scalar df-sca 12969. (Contributed
by Mario Carneiro, 19-Jun-2014.)
|
| ⊢ Scalar = Slot
(Scalar‘ndx) |
| |
| Theorem | scaslid 13029 |
Slot property of Scalar. (Contributed by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ (Scalar = Slot (Scalar‘ndx) ∧
(Scalar‘ndx) ∈ ℕ) |
| |
| Theorem | scandxnbasendx 13030 |
The slot for the scalar is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | scandxnplusgndx 13031 |
The slot for the scalar field is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | scandxnmulrndx 13032 |
The slot for the scalar field is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ (Scalar‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | vscandx 13033 |
Index value of the df-vsca 12970 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ ( ·𝑠
‘ndx) = 6 |
| |
| Theorem | vscaid 13034 |
Utility theorem: index-independent form of scalar product df-vsca 12970.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro,
19-Jun-2014.)
|
| ⊢ ·𝑠 = Slot
( ·𝑠 ‘ndx) |
| |
| Theorem | vscandxnbasendx 13035 |
The slot for the scalar product is not the slot for the base set in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Base‘ndx) |
| |
| Theorem | vscandxnplusgndx 13036 |
The slot for the scalar product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (+g‘ndx) |
| |
| Theorem | vscandxnmulrndx 13037 |
The slot for the scalar product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (.r‘ndx) |
| |
| Theorem | vscandxnscandx 13038 |
The slot for the scalar product is not the slot for the scalar field in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ ( ·𝑠
‘ndx) ≠ (Scalar‘ndx) |
| |
| Theorem | vscaslid 13039 |
Slot property of ·𝑠.
(Contributed by Jim Kingdon, 5-Feb-2023.)
|
| ⊢ ( ·𝑠 = Slot
( ·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| |
| Theorem | lmodstrd 13040 |
A constructed left module or left vector space is a structure.
(Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Jim Kingdon,
5-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 6〉) |
| |
| Theorem | lmodbased 13041 |
The base set of a constructed left vector space. (Contributed by Mario
Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| |
| Theorem | lmodplusgd 13042 |
The additive operation of a constructed left vector space. (Contributed
by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
| |
| Theorem | lmodscad 13043 |
The set of scalars of a constructed left vector space. (Contributed by
Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon, 6-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → 𝐹 = (Scalar‘𝑊)) |
| |
| Theorem | lmodvscad 13044 |
The scalar product operation of a constructed left vector space.
(Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝑊 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(Scalar‘ndx), 𝐹〉} ∪ {〈(
·𝑠 ‘ndx), ·
〉})
& ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑋)
& ⊢ (𝜑 → 𝐹 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑍)
⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
| |
| Theorem | ipndx 13045 |
Index value of the df-ip 12971 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢
(·𝑖‘ndx) = 8 |
| |
| Theorem | ipid 13046 |
Utility theorem: index-independent form of df-ip 12971. (Contributed by
Mario Carneiro, 6-Oct-2013.)
|
| ⊢ ·𝑖 = Slot
(·𝑖‘ndx) |
| |
| Theorem | ipslid 13047 |
Slot property of ·𝑖.
(Contributed by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ (·𝑖 = Slot
(·𝑖‘ndx) ∧
(·𝑖‘ndx) ∈
ℕ) |
| |
| Theorem | ipndxnbasendx 13048 |
The slot for the inner product is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | ipndxnplusgndx 13049 |
The slot for the inner product is not the slot for the group operation in
an extensible structure. (Contributed by AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | ipndxnmulrndx 13050 |
The slot for the inner product is not the slot for the ring
(multiplication) operation in an extensible structure. (Contributed by
AV, 29-Oct-2024.)
|
| ⊢
(·𝑖‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | slotsdifipndx 13051 |
The slot for the scalar is not the index of other slots. (Contributed by
AV, 12-Nov-2024.)
|
| ⊢ (( ·𝑠
‘ndx) ≠ (·𝑖‘ndx) ∧
(Scalar‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | ipsstrd 13052 |
A constructed inner product space is a structure. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐴 Struct 〈1, 8〉) |
| |
| Theorem | ipsbased 13053 |
The base set of a constructed inner product space. (Contributed by
Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐴)) |
| |
| Theorem | ipsaddgd 13054 |
The additive operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → + =
(+g‘𝐴)) |
| |
| Theorem | ipsmulrd 13055 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
7-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → × =
(.r‘𝐴)) |
| |
| Theorem | ipsscad 13056 |
The set of scalars of a constructed inner product space. (Contributed
by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝐴)) |
| |
| Theorem | ipsvscad 13057 |
The scalar product operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → · = (
·𝑠 ‘𝐴)) |
| |
| Theorem | ipsipd 13058 |
The multiplicative operation of a constructed inner product space.
(Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon,
8-Feb-2023.)
|
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑆〉, 〈(
·𝑠 ‘ndx), · 〉,
〈(·𝑖‘ndx), 𝐼〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌)
& ⊢ (𝜑 → · ∈ 𝑄) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐼 =
(·𝑖‘𝐴)) |
| |
| Theorem | ressscag 13059 |
Scalar is unaffected by restriction. (Contributed by
Mario
Carneiro, 7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ 𝐹 = (Scalar‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → 𝐹 = (Scalar‘𝐻)) |
| |
| Theorem | ressvscag 13060 |
·𝑠 is unaffected by
restriction. (Contributed by Mario Carneiro,
7-Dec-2014.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ · = (
·𝑠 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → · = (
·𝑠 ‘𝐻)) |
| |
| Theorem | ressipg 13061 |
The inner product is unaffected by restriction. (Contributed by
Thierry Arnoux, 16-Jun-2019.)
|
| ⊢ 𝐻 = (𝐺 ↾s 𝐴)
& ⊢ , =
(·𝑖‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → , =
(·𝑖‘𝐻)) |
| |
| Theorem | tsetndx 13062 |
Index value of the df-tset 12972 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (TopSet‘ndx) = 9 |
| |
| Theorem | tsetid 13063 |
Utility theorem: index-independent form of df-tset 12972. (Contributed by
NM, 20-Oct-2012.)
|
| ⊢ TopSet = Slot
(TopSet‘ndx) |
| |
| Theorem | tsetslid 13064 |
Slot property of TopSet. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ (TopSet = Slot (TopSet‘ndx) ∧
(TopSet‘ndx) ∈ ℕ) |
| |
| Theorem | tsetndxnn 13065 |
The index of the slot for the group operation in an extensible structure
is a positive integer. (Contributed by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ∈
ℕ |
| |
| Theorem | basendxlttsetndx 13066 |
The index of the slot for the base set is less then the index of the slot
for the topology in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(TopSet‘ndx) |
| |
| Theorem | tsetndxnbasendx 13067 |
The slot for the topology is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened
by AV, 31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | tsetndxnplusgndx 13068 |
The slot for the topology is not the slot for the group operation in an
extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | tsetndxnmulrndx 13069 |
The slot for the topology is not the slot for the ring multiplication
operation in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | tsetndxnstarvndx 13070 |
The slot for the topology is not the slot for the involution in an
extensible structure. (Contributed by AV, 11-Nov-2024.)
|
| ⊢ (TopSet‘ndx) ≠
(*𝑟‘ndx) |
| |
| Theorem | slotstnscsi 13071 |
The slots Scalar, ·𝑠 and ·𝑖 are different from the
slot
TopSet. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ ((TopSet‘ndx) ≠ (Scalar‘ndx)
∧ (TopSet‘ndx) ≠ ( ·𝑠
‘ndx) ∧ (TopSet‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | topgrpstrd 13072 |
A constructed topological group is a structure. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑊 Struct 〈1, 9〉) |
| |
| Theorem | topgrpbasd 13073 |
The base set of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| |
| Theorem | topgrpplusgd 13074 |
The additive operation of a constructed topological group. (Contributed
by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + =
(+g‘𝑊)) |
| |
| Theorem | topgrptsetd 13075 |
The topology of a constructed topological group. (Contributed by Mario
Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.)
|
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → + ∈ 𝑊)
& ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) |
| |
| Theorem | plendx 13076 |
Index value of the df-ple 12973 slot. (Contributed by Mario Carneiro,
14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ (le‘ndx) = ;10 |
| |
| Theorem | pleid 13077 |
Utility theorem: self-referencing, index-independent form of df-ple 12973.
(Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
|
| ⊢ le = Slot (le‘ndx) |
| |
| Theorem | pleslid 13078 |
Slot property of le. (Contributed by Jim Kingdon,
9-Feb-2023.)
|
| ⊢ (le = Slot (le‘ndx) ∧
(le‘ndx) ∈ ℕ) |
| |
| Theorem | plendxnn 13079 |
The index value of the order slot is a positive integer. This property
should be ensured for every concrete coding because otherwise it could not
be used in an extensible structure (slots must be positive integers).
(Contributed by AV, 30-Oct-2024.)
|
| ⊢ (le‘ndx) ∈
ℕ |
| |
| Theorem | basendxltplendx 13080 |
The index value of the Base slot is less than the index
value of the
le slot. (Contributed by AV, 30-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(le‘ndx) |
| |
| Theorem | plendxnbasendx 13081 |
The slot for the order is not the slot for the base set in an extensible
structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV,
30-Oct-2024.)
|
| ⊢ (le‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | plendxnplusgndx 13082 |
The slot for the "less than or equal to" ordering is not the slot for
the
group operation in an extensible structure. (Contributed by AV,
18-Oct-2024.)
|
| ⊢ (le‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | plendxnmulrndx 13083 |
The slot for the "less than or equal to" ordering is not the slot for
the
ring multiplication operation in an extensible structure. (Contributed by
AV, 1-Nov-2024.)
|
| ⊢ (le‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | plendxnscandx 13084 |
The slot for the "less than or equal to" ordering is not the slot for
the
scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.)
|
| ⊢ (le‘ndx) ≠
(Scalar‘ndx) |
| |
| Theorem | plendxnvscandx 13085 |
The slot for the "less than or equal to" ordering is not the slot for
the
scalar product in an extensible structure. (Contributed by AV,
1-Nov-2024.)
|
| ⊢ (le‘ndx) ≠ (
·𝑠 ‘ndx) |
| |
| Theorem | slotsdifplendx 13086 |
The index of the slot for the distance is not the index of other slots.
(Contributed by AV, 11-Nov-2024.)
|
| ⊢ ((*𝑟‘ndx) ≠
(le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) |
| |
| Theorem | ocndx 13087 |
Index value of the df-ocomp 12974 slot. (Contributed by Mario Carneiro,
25-Oct-2015.) (New usage is discouraged.)
|
| ⊢ (oc‘ndx) = ;11 |
| |
| Theorem | ocid 13088 |
Utility theorem: index-independent form of df-ocomp 12974. (Contributed by
Mario Carneiro, 25-Oct-2015.)
|
| ⊢ oc = Slot (oc‘ndx) |
| |
| Theorem | basendxnocndx 13089 |
The slot for the orthocomplementation is not the slot for the base set in
an extensible structure. (Contributed by AV, 11-Nov-2024.)
|
| ⊢ (Base‘ndx) ≠
(oc‘ndx) |
| |
| Theorem | plendxnocndx 13090 |
The slot for the orthocomplementation is not the slot for the order in an
extensible structure. (Contributed by AV, 11-Nov-2024.)
|
| ⊢ (le‘ndx) ≠
(oc‘ndx) |
| |
| Theorem | dsndx 13091 |
Index value of the df-ds 12975 slot. (Contributed by Mario Carneiro,
14-Aug-2015.)
|
| ⊢ (dist‘ndx) = ;12 |
| |
| Theorem | dsid 13092 |
Utility theorem: index-independent form of df-ds 12975. (Contributed by
Mario Carneiro, 23-Dec-2013.)
|
| ⊢ dist = Slot
(dist‘ndx) |
| |
| Theorem | dsslid 13093 |
Slot property of dist. (Contributed by Jim Kingdon,
6-May-2023.)
|
| ⊢ (dist = Slot (dist‘ndx) ∧
(dist‘ndx) ∈ ℕ) |
| |
| Theorem | dsndxnn 13094 |
The index of the slot for the distance in an extensible structure is a
positive integer. (Contributed by AV, 28-Oct-2024.)
|
| ⊢ (dist‘ndx) ∈
ℕ |
| |
| Theorem | basendxltdsndx 13095 |
The index of the slot for the base set is less then the index of the slot
for the distance in an extensible structure. (Contributed by AV,
28-Oct-2024.)
|
| ⊢ (Base‘ndx) <
(dist‘ndx) |
| |
| Theorem | dsndxnbasendx 13096 |
The slot for the distance is not the slot for the base set in an
extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened
by AV, 28-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(Base‘ndx) |
| |
| Theorem | dsndxnplusgndx 13097 |
The slot for the distance function is not the slot for the group operation
in an extensible structure. (Contributed by AV, 18-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(+g‘ndx) |
| |
| Theorem | dsndxnmulrndx 13098 |
The slot for the distance function is not the slot for the ring
multiplication operation in an extensible structure. (Contributed by AV,
31-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(.r‘ndx) |
| |
| Theorem | slotsdnscsi 13099 |
The slots Scalar, ·𝑠 and ·𝑖 are different from the
slot
dist. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ ((dist‘ndx) ≠ (Scalar‘ndx)
∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx)
∧ (dist‘ndx) ≠
(·𝑖‘ndx)) |
| |
| Theorem | dsndxntsetndx 13100 |
The slot for the distance function is not the slot for the topology in an
extensible structure. (Contributed by AV, 29-Oct-2024.)
|
| ⊢ (dist‘ndx) ≠
(TopSet‘ndx) |