HomeHome Intuitionistic Logic Explorer
Theorem List (p. 131 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13001-13100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmulgnnsubcl 13001* Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)       ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgnn0subcl 13002* Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &    0 = (0g𝐺)    &   (𝜑0𝑆)       ((𝜑𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgsubcl 13003* Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑆𝐵)    &   ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)    &    0 = (0g𝐺)    &   (𝜑0𝑆)    &   𝐼 = (invg𝐺)    &   ((𝜑𝑥𝑆) → (𝐼𝑥) ∈ 𝑆)       ((𝜑𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremmulgnncl 13004 Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgnn0cl 13005 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgcl 13006 Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgneg 13007 Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋)))
 
Theoremmulgnegneg 13008 The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
 
Theoremmulgm1 13009 Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (-1 · 𝑋) = (𝐼𝑋))
 
Theoremmulgnn0cld 13010 Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13005. (Contributed by SN, 1-Feb-2025.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgcld 13011 Deduction associated with mulgcl 13006. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑁 · 𝑋) ∈ 𝐵)
 
Theoremmulgaddcomlem 13012 Lemma for mulgaddcom 13013. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
 
Theoremmulgaddcom 13013 The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋)))
 
Theoremmulginvcom 13014 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · (𝐼𝑋)) = (𝐼‘(𝑁 · 𝑋)))
 
Theoremmulginvinv 13015 The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐼‘(𝑁 · (𝐼𝑋))) = (𝑁 · 𝑋))
 
Theoremmulgnn0z 13016 A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
 
Theoremmulgz 13017 A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 )
 
Theoremmulgnndir 13018 Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgnn0dir 13019 Sum of group multiples, generalized to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgdirlem 13020 Lemma for mulgdir 13021. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgdir 13021 Sum of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
 
Theoremmulgp1 13022 Group multiple (exponentiation) operation at a successor, extended to . (Contributed by Mario Carneiro, 11-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
 
Theoremmulgneg2 13023 Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &   𝐼 = (invg𝐺)       ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼𝑋)))
 
Theoremmulgnnass 13024 Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgnn0ass 13025 Product of group multiples, generalized to 0. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgass 13026 Product of group multiples, generalized to . (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgassr 13027 Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑁 · 𝑀) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
 
Theoremmulgmodid 13028 Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    · = (.g𝐺)       ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))
 
Theoremmulgsubdir 13029 Distribution of group multiples over subtraction for group elements, subdir 8346 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    = (-g𝐺)       ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
 
Theoremmhmmulg 13030 A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝐺)    &    · = (.g𝐺)    &    × = (.g𝐻)       ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
 
Theoremmulgpropdg 13031* Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
(𝜑· = (.g𝐺))    &   (𝜑× = (.g𝐻))    &   (𝜑𝐺𝑉)    &   (𝜑𝐻𝑊)    &   (𝜑𝐵 = (Base‘𝐺))    &   (𝜑𝐵 = (Base‘𝐻))    &   (𝜑𝐵𝐾)    &   ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) ∈ 𝐾)    &   ((𝜑 ∧ (𝑥𝐾𝑦𝐾)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))       (𝜑· = × )
 
Theoremsubmmulgcl 13032 Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.)
= (.g𝐺)       ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0𝑋𝑆) → (𝑁 𝑋) ∈ 𝑆)
 
7.2.3  Subgroups and Quotient groups
 
Syntaxcsubg 13033 Extend class notation with all subgroups of a group.
class SubGrp
 
Syntaxcnsg 13034 Extend class notation with all normal subgroups of a group.
class NrmSGrp
 
Syntaxcqg 13035 Quotient group equivalence class.
class ~QG
 
Definitiondf-subg 13036* Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13055), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13050), contains the neutral element of the group (see subg0 13046) and contains the inverses for all of its elements (see subginvcl 13049). (Contributed by Mario Carneiro, 2-Dec-2014.)
SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
 
Definitiondf-nsg 13037* Define the equivalence relation in a quotient ring or quotient group (where 𝑖 is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.)
NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g𝑤) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)})
 
Definitiondf-eqg 13038* Define the equivalence relation in a group generated by a subgroup. More precisely, if 𝐺 is a group and 𝐻 is a subgroup, then 𝐺 ~QG 𝐻 is the equivalence relation on 𝐺 associated with the left cosets of 𝐻. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.)
~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)})
 
Theoremissubg 13039 The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)       (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆𝐵 ∧ (𝐺s 𝑆) ∈ Grp))
 
Theoremsubgss 13040 A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
 
Theoremsubgid 13041 A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺))
 
Theoremsubgex 13042 The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
(𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V)
 
Theoremsubggrp 13043 A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐻 = (𝐺s 𝑆)       (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
 
Theoremsubgbas 13044 The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐻 = (𝐺s 𝑆)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
 
Theoremsubgrcl 13045 Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
(𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
 
Theoremsubg0 13046 A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐻 = (𝐺s 𝑆)    &    0 = (0g𝐺)       (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g𝐻))
 
Theoremsubginv 13047 The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐻 = (𝐺s 𝑆)    &   𝐼 = (invg𝐺)    &   𝐽 = (invg𝐻)       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) = (𝐽𝑋))
 
Theoremsubg0cl 13048 The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
0 = (0g𝐺)       (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
 
Theoremsubginvcl 13049 The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐼 = (invg𝐺)       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆) → (𝐼𝑋) ∈ 𝑆)
 
Theoremsubgcl 13050 A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
+ = (+g𝐺)       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
 
Theoremsubgsubcl 13051 A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.)
= (-g𝐺)       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) ∈ 𝑆)
 
Theoremsubgsub 13052 The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.)
= (-g𝐺)    &   𝐻 = (𝐺s 𝑆)    &   𝑁 = (-g𝐻)       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 𝑌) = (𝑋𝑁𝑌))
 
Theoremsubgmulgcl 13053 Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
· = (.g𝐺)       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
 
Theoremsubgmulg 13054 A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
· = (.g𝐺)    &   𝐻 = (𝐺s 𝑆)    &    = (.g𝐻)       ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (𝑁 𝑋))
 
Theoremissubg2m 13055* Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐼 = (invg𝐺)       (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑢 𝑢𝑆 ∧ ∀𝑥𝑆 (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼𝑥) ∈ 𝑆))))
 
Theoremissubgrpd2 13056* Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
(𝜑𝑆 = (𝐼s 𝐷))    &   (𝜑0 = (0g𝐼))    &   (𝜑+ = (+g𝐼))    &   (𝜑𝐷 ⊆ (Base‘𝐼))    &   (𝜑0𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)    &   ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)    &   (𝜑𝐼 ∈ Grp)       (𝜑𝐷 ∈ (SubGrp‘𝐼))
 
Theoremissubgrpd 13057* Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
(𝜑𝑆 = (𝐼s 𝐷))    &   (𝜑0 = (0g𝐼))    &   (𝜑+ = (+g𝐼))    &   (𝜑𝐷 ⊆ (Base‘𝐼))    &   (𝜑0𝐷)    &   ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)    &   ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)    &   (𝜑𝐼 ∈ Grp)       (𝜑𝑆 ∈ Grp)
 
Theoremissubg3 13058* A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐼 = (invg𝐺)       (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥𝑆 (𝐼𝑥) ∈ 𝑆)))
 
Theoremissubg4m 13059* A subgroup is an inhabited subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)       (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆𝐵 ∧ ∃𝑤 𝑤𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 𝑦) ∈ 𝑆)))
 
Theoremgrpissubg 13060 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)       ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺)))
 
Theoremresgrpisgrp 13061 If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)       ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → (𝐺s 𝑆) ∈ Grp))
 
Theoremsubgsubm 13062 A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺))
 
Theoremsubsubg 13063 A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
𝐻 = (𝐺s 𝑆)       (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))
 
Theoremsubgintm 13064* The intersection of an inhabited collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
 
Theorem0subg 13065 The zero subgroup of an arbitrary group. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof shortened by SN, 31-Jan-2025.)
0 = (0g𝐺)       (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
 
Theoremtrivsubgd 13066 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })    &   (𝜑𝐴 ∈ (SubGrp‘𝐺))       (𝜑𝐴 = 𝐵)
 
Theoremtrivsubgsnd 13067 The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (SubGrp‘𝐺) = {𝐵})
 
Theoremisnsg 13068* Property of being a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
 
Theoremisnsg2 13069* Weaken the condition of isnsg 13068 to only one side of the implication. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆)))
 
Theoremnsgbi 13070 Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
 
Theoremnsgsubg 13071 A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
(𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
 
Theoremnsgconj 13072 The conjugation of an element of a normal subgroup is in the subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑆) → ((𝐴 + 𝐵) 𝐴) ∈ 𝑆)
 
Theoremisnsg3 13073* A subgroup is normal iff the conjugation of all the elements of the subgroup is in the subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (-g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑆 ((𝑥 + 𝑦) 𝑥) ∈ 𝑆))
 
Theoremelnmz 13074* Elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}       (𝐴𝑁 ↔ (𝐴𝑋 ∧ ∀𝑧𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆)))
 
Theoremnmzbi 13075* Defining property of the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}       ((𝐴𝑁𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
 
Theoremnmzsubg 13076* The normalizer NG(S) of a subset 𝑆 of the group is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
 
Theoremssnmz 13077* A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
 
Theoremisnsg4 13078* A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)       (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋))
 
Theoremnmznsg 13079* Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   𝑋 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑁)       (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
 
Theorem0nsg 13080 The zero subgroup is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
0 = (0g𝐺)       (𝐺 ∈ Grp → { 0 } ∈ (NrmSGrp‘𝐺))
 
Theoremnsgid 13081 The whole group is a normal subgroup of itself. (Contributed by Mario Carneiro, 4-Feb-2015.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺))
 
Theorem0idnsgd 13082 The whole group and the zero subgroup are normal subgroups of a group. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)       (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺))
 
Theoremtrivnsgd 13083 The only normal subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (NrmSGrp‘𝐺) = {𝐵})
 
Theoremtriv1nsgd 13084 A trivial group has exactly one normal subgroup. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝐵 = { 0 })       (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)
 
Theorem1nsgtrivd 13085 A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑 → (NrmSGrp‘𝐺) ≈ 1o)       (𝜑𝐵 = { 0 })
 
Theoremreleqgg 13086 The left coset equivalence relation is a relation. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑊) → Rel 𝑅)
 
Theoremeqgfval 13087* Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &    + = (+g𝐺)    &   𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑋) → 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁𝑥) + 𝑦) ∈ 𝑆)})
 
Theoremeqgval 13088 Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015.) (Revised by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &   𝑁 = (invg𝐺)    &    + = (+g𝐺)    &   𝑅 = (𝐺 ~QG 𝑆)       ((𝐺𝑉𝑆𝑋) → (𝐴𝑅𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐴) + 𝐵) ∈ 𝑆)))
 
Theoremeqger 13089 The subgroup coset equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 13-Jan-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)       (𝑌 ∈ (SubGrp‘𝐺) → Er 𝑋)
 
Theoremeqglact 13090* A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑌𝑋𝐴𝑋) → [𝐴] = ((𝑥𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌))
 
Theoremeqgid 13091 The left coset containing the identity is the original subgroup. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    0 = (0g𝐺)       (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] = 𝑌)
 
Theoremeqgen 13092 Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)       ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / )) → 𝑌𝐴)
 
Theoremeqgcpbl 13093 The subgroup coset equivalence relation is compatible with addition when the subgroup is normal. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝑋 = (Base‘𝐺)    &    = (𝐺 ~QG 𝑌)    &    + = (+g𝐺)       (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
 
7.2.4  Abelian groups
 
7.2.4.1  Definition and basic properties
 
Syntaxccmn 13094 Extend class notation with class of all commutative monoids.
class CMnd
 
Syntaxcabl 13095 Extend class notation with class of all Abelian groups.
class Abel
 
Definitiondf-cmn 13096* Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015.)
CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g𝑔)𝑏) = (𝑏(+g𝑔)𝑎)}
 
Definitiondf-abl 13097 Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Abel = (Grp ∩ CMnd)
 
Theoremisabl 13098 The predicate "is an Abelian (commutative) group". (Contributed by NM, 17-Oct-2011.)
(𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd))
 
Theoremablgrp 13099 An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
(𝐺 ∈ Abel → 𝐺 ∈ Grp)
 
Theoremablgrpd 13100 An Abelian group is a group, deduction form of ablgrp 13099. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐺 ∈ Abel)       (𝜑𝐺 ∈ Grp)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14972
  Copyright terms: Public domain < Previous  Next >