HomeHome Intuitionistic Logic Explorer
Theorem List (p. 131 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13001-13100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremismgmn0 13001* The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
 
Theoremmgmcl 13002 Closure of the operation of a magma. (Contributed by FL, 14-Sep-2010.) (Revised by AV, 13-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremisnmgm 13003 A condition for a structure not to be a magma. (Contributed by AV, 30-Jan-2020.) (Proof shortened by NM, 5-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑌) ∉ 𝐵) → 𝑀 ∉ Mgm)
 
Theoremmgmsscl 13004 If the base set of a magma is contained in the base set of another magma, and the group operation of the magma is the restriction of the group operation of the other magma to its base set, then the base set of the magma is closed under the group operation of the other magma. (Contributed by AV, 17-Feb-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)       (((𝐺 ∈ Mgm ∧ 𝐻 ∈ Mgm) ∧ (𝑆𝐵 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(+g𝐺)𝑌) ∈ 𝑆)
 
Theoremplusffvalg 13005* The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 2-Mar-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       (𝐺𝑉 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + 𝑦)))
 
Theoremplusfvalg 13006 The group addition operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ((𝐺𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋 + 𝑌))
 
Theoremplusfeqg 13007 If the addition operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (+𝑓𝐺)       ((𝐺𝑉+ Fn (𝐵 × 𝐵)) → = + )
 
Theoremplusffng 13008 The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺𝑉 Fn (𝐵 × 𝐵))
 
Theoremmgmplusf 13009 The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+𝑓𝑀)       (𝑀 ∈ Mgm → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremintopsn 13010 The internal operation for a set is the trivial operation iff the set is a singleton. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 23-Jan-2020.)
(( :(𝐵 × 𝐵)⟶𝐵𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgmb1mgm1 13011 The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)       ((𝑀 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
 
Theoremmgm0 13012 Any set with an empty base set and any group operation is a magma. (Contributed by AV, 28-Aug-2021.)
((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Mgm)
 
Theoremmgm1 13013 The structure with one element and the only closed internal operation for a singleton is a magma. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mgm)
 
Theoremopifismgmdc 13014* A structure with a group addition operation expressed by a conditional operator is a magma if both values of the conditional operator are contained in the base set. (Contributed by AV, 9-Feb-2020.)
𝐵 = (Base‘𝑀)    &   (+g𝑀) = (𝑥𝐵, 𝑦𝐵 ↦ if(𝜓, 𝐶, 𝐷))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → DECID 𝜓)    &   (𝜑 → ∃𝑥 𝑥𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐷𝐵)       (𝜑𝑀 ∈ Mgm)
 
7.1.2  Identity elements

According to Wikipedia ("Identity element", 7-Feb-2020, https://en.wikipedia.org/wiki/Identity_element): "In mathematics, an identity element, or neutral element, is a special type of element of a set with respect to a binary operation on that set, which leaves any element of the set unchanged when combined with it.". Or in more detail "... an element e of S is called a left identity if e * a = a for all a in S, and a right identity if a * e = a for all a in S. If e is both a left identity and a right identity, then it is called a two-sided identity, or simply an identity." We concentrate on two-sided identities in the following. The existence of an identity (an identity is unique if it exists, see mgmidmo 13015) is an important property of monoids, and therefore also for groups, but also for magmas not required to be associative. Magmas with an identity element are called "unital magmas" (see Definition 2 in [BourbakiAlg1] p. 12) or, if the magmas are cancellative, "loops" (see definition in [Bruck] p. 15).

In the context of extensible structures, the identity element (of any magma 𝑀) is defined as "group identity element" (0g𝑀), see df-0g 12929. Related theorems which are already valid for magmas are provided in the following.

 
Theoremmgmidmo 13015* A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
 
Theoremgrpidvalg 13016* The value of the identity element of a group. (Contributed by NM, 20-Aug-2011.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺𝑉0 = (℩𝑒(𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))))
 
Theoremgrpidpropdg 13017* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, they have the same identity element. (Contributed by Mario Carneiro, 27-Nov-2014.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (0g𝐾) = (0g𝐿))
 
Theoremfn0g 13018 The group zero extractor is a function. (Contributed by Stefan O'Rear, 10-Jan-2015.)
0g Fn V
 
Theorem0g0 13019 The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
∅ = (0g‘∅)
 
Theoremismgmid 13020* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑 → ((𝑈𝐵 ∧ ∀𝑥𝐵 ((𝑈 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑈) = 𝑥)) ↔ 0 = 𝑈))
 
Theoremmgmidcl 13021* The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       (𝜑0𝐵)
 
Theoremmgmlrid 13022* The identity element of a magma, if it exists, is a left and right identity. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑 → ∃𝑒𝐵𝑥𝐵 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))       ((𝜑𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremismgmid2 13023* Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝑈𝐵)    &   ((𝜑𝑥𝐵) → (𝑈 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 𝑈) = 𝑥)       (𝜑𝑈 = 0 )
 
Theoremlidrideqd 13024* If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
(𝜑𝐿𝐵)    &   (𝜑𝑅𝐵)    &   (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)    &   (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)       (𝜑𝐿 = 𝑅)
 
Theoremlidrididd 13025* If there is a left and right identity element for any binary operation (group operation) +, the left identity element (and therefore also the right identity element according to lidrideqd 13024) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
(𝜑𝐿𝐵)    &   (𝜑𝑅𝐵)    &   (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)    &   (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)    &   𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝜑𝐿 = 0 )
 
Theoremgrpidd 13026* Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑0 = (0g𝐺))
 
Theoremmgmidsssn0 13027* Property of the set of identities of 𝐺. Either 𝐺 has no identities, and 𝑂 = ∅, or it has one and this identity is unique and identified by the 0g function. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}       (𝐺𝑉𝑂 ⊆ { 0 })
 
Theoremgrpinvalem 13028* Lemma for grpinva 13029. (Contributed by NM, 9-Aug-2013.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)    &   ((𝜑𝜓) → 𝑋𝐵)    &   ((𝜑𝜓) → (𝑋 + 𝑋) = 𝑋)       ((𝜑𝜓) → 𝑋 = 𝑂)
 
Theoremgrpinva 13029* Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)    &   ((𝜑𝜓) → 𝑋𝐵)    &   ((𝜑𝜓) → 𝑁𝐵)    &   ((𝜑𝜓) → (𝑁 + 𝑋) = 𝑂)       ((𝜑𝜓) → (𝑋 + 𝑁) = 𝑂)
 
Theoremgrprida 13030* Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013.) (Proof shortened by Mario Carneiro, 6-Jan-2015.)
((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   (𝜑𝑂𝐵)    &   ((𝜑𝑥𝐵) → (𝑂 + 𝑥) = 𝑥)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 𝑂)       ((𝜑𝑥𝐵) → (𝑥 + 𝑂) = 𝑥)
 
7.1.3  Iterated sums in a magma

The symbol Σg is mostly used in the context of abelian groups. Therefore, it is usually called "group sum". It can be defined, however, in arbitrary magmas (then it should be called "iterated sum"). If the magma is not required to be commutative or associative, then the order of the summands and the order in which summations are done become important. If the magma is not unital, then one cannot define a meaningful empty sum. See the comment for df-igsum 12930.

 
Theoremfngsum 13031 Iterated sum has a universal domain. (Contributed by Jim Kingdon, 28-Jun-2025.)
Σg Fn (V × V)
 
Theoremigsumvalx 13032* Expand out the substitutions in df-igsum 12930. (Contributed by Mario Carneiro, 18-Sep-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹𝑋)    &   (𝜑 → dom 𝐹 = 𝐴)       (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
 
Theoremigsumval 13033* Expand out the substitutions in df-igsum 12930. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑋)    &   (𝜑𝐹:𝐴𝐵)       (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((𝐴 = ∅ ∧ 𝑥 = 0 ) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛)))))
 
Theoremgsumfzval 13034 An expression for Σg when summing over a finite set of sequential integers. (Contributed by Jim Kingdon, 14-Aug-2025.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = if(𝑁 < 𝑀, 0 , (seq𝑀( + , 𝐹)‘𝑁)))
 
Theoremgsumpropd 13035 The group sum depends only on the base set and additive operation. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Proof shortened by Mario Carneiro, 18-Sep-2015.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑 → (+g𝐺) = (+g𝐻))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumpropd2 13036* A stronger version of gsumpropd 13035, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 13037. (Contributed by Thierry Arnoux, 28-Jun-2017.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))    &   (𝜑 → Fun 𝐹)    &   (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsummgmpropd 13037* A stronger version of gsumpropd 13035 if at least one of the involved structures is a magma, see gsumpropd2 13036. (Contributed by AV, 31-Jan-2020.)
(𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   (𝜑𝐻𝑋)    &   (𝜑 → (Base‘𝐺) = (Base‘𝐻))    &   (𝜑𝐺 ∈ Mgm)    &   ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))    &   (𝜑 → Fun 𝐹)    &   (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumress 13038* The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither 𝐺 nor 𝐻 need be groups. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝐻 = (𝐺s 𝑆)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝑋)    &   (𝜑𝑆𝐵)    &   (𝜑𝐹:𝐴𝑆)    &   (𝜑0𝑆)    &   ((𝜑𝑥𝐵) → (( 0 + 𝑥) = 𝑥 ∧ (𝑥 + 0 ) = 𝑥))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsum0g 13039 Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014.)
0 = (0g𝐺)       (𝐺𝑉 → (𝐺 Σg ∅) = 0 )
 
Theoremgsumval2 13040 Value of the group sum operation over a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...𝑁)⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremgsumsplit1r 13041 Splitting off the rightmost summand of a group sum. This corresponds to the (inductive) definition of a (finite) product in [Lang] p. 4, first formula. (Contributed by AV, 26-Dec-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐹:(𝑀...(𝑁 + 1))⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ (𝑀...𝑁))) + (𝐹‘(𝑁 + 1))))
 
Theoremgsumprval 13042 Value of the group sum operation over a pair of sequential integers. (Contributed by AV, 14-Dec-2018.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 = (𝑀 + 1))    &   (𝜑𝐹:{𝑀, 𝑁}⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐹𝑀) + (𝐹𝑁)))
 
Theoremgsumpr12val 13043 Value of the group sum operation over the pair {1, 2}. (Contributed by AV, 14-Dec-2018.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐹:{1, 2}⟶𝐵)       (𝜑 → (𝐺 Σg 𝐹) = ((𝐹‘1) + (𝐹‘2)))
 
7.1.4  Semigroups

A semigroup (Smgrp, see df-sgrp 13045) is a set together with an associative binary operation (see Wikipedia, Semigroup, 8-Jan-2020, https://en.wikipedia.org/wiki/Semigroup 13045). In other words, a semigroup is an associative magma. The notion of semigroup is a generalization of that of group where the existence of an identity or inverses is not required.

 
Syntaxcsgrp 13044 Extend class notation with class of all semigroups.
class Smgrp
 
Definitiondf-sgrp 13045* A semigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm 12999), whose operation is associative. Definition in section II.1 of [Bruck] p. 23, or of an "associative magma" in definition 5 of [BourbakiAlg1] p. 4 . (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
 
Theoremissgrp 13046* The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀 ∈ Smgrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧))))
 
Theoremissgrpv 13047* The predicate "is a semigroup" for a structure which is a set. (Contributed by AV, 1-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝑀𝑉 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
 
Theoremissgrpn0 13048* The predicate "is a semigroup" for a structure with a nonempty base set. (Contributed by AV, 1-Feb-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       (𝐴𝐵 → (𝑀 ∈ Smgrp ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 𝑦) 𝑧) = (𝑥 (𝑦 𝑧)))))
 
Theoremisnsgrp 13049 A condition for a structure not to be a semigroup. (Contributed by AV, 30-Jan-2020.)
𝐵 = (Base‘𝑀)    &    = (+g𝑀)       ((𝑋𝐵𝑌𝐵𝑍𝐵) → (((𝑋 𝑌) 𝑍) ≠ (𝑋 (𝑌 𝑍)) → 𝑀 ∉ Smgrp))
 
Theoremsgrpmgm 13050 A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.)
(𝑀 ∈ Smgrp → 𝑀 ∈ Mgm)
 
Theoremsgrpass 13051 A semigroup operation is associative. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 30-Jan-2020.)
𝐵 = (Base‘𝐺)    &    = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌) 𝑍) = (𝑋 (𝑌 𝑍)))
 
Theoremsgrpcl 13052 Closure of the operation of a semigroup. (Contributed by AV, 15-Feb-2025.)
𝐵 = (Base‘𝐺)    &    = (+g𝐺)       ((𝐺 ∈ Smgrp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
 
Theoremsgrp0 13053 Any set with an empty base set and any group operation is a semigroup. (Contributed by AV, 28-Aug-2021.)
((𝑀𝑉 ∧ (Base‘𝑀) = ∅) → 𝑀 ∈ Smgrp)
 
Theoremsgrp1 13054 The structure with one element and the only closed internal operation for a singleton is a semigroup. (Contributed by AV, 10-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Smgrp)
 
Theoremissgrpd 13055* Deduce a semigroup from its properties. (Contributed by AV, 13-Feb-2025.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑𝐺𝑉)       (𝜑𝐺 ∈ Smgrp)
 
Theoremsgrppropd 13056* If two structures are sets, have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a semigroup iff the other one is. (Contributed by AV, 15-Feb-2025.)
(𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   (𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Smgrp ↔ 𝐿 ∈ Smgrp))
 
7.1.5  Definition and basic properties of monoids

According to Wikipedia ("Monoid", https://en.wikipedia.org/wiki/Monoid, 6-Feb-2020,) "In abstract algebra [...] a monoid is an algebraic structure with a single associative binary operation and an identity element. Monoids are semigroups with identity.". In the following, monoids are defined in the second way (as semigroups with identity), see df-mnd 13058, whereas many authors define magmas in the first way (as algebraic structure with a single associative binary operation and an identity element, i.e. without the need of a definition for/knowledge about semigroups), see ismnd 13060. See, for example, the definition in [Lang] p. 3: "A monoid is a set G, with a law of composition which is associative, and having a unit element".

 
Syntaxcmnd 13057 Extend class notation with class of all monoids.
class Mnd
 
Definitiondf-mnd 13058* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 13064), whose operation is associative (see mndass 13065) and has a two-sided neutral element (see mndid 13066), see also ismnd 13060. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
 
Theoremismnddef 13059* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremismnd 13060* The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 13064), whose operation is associative (so, a semigroup, see also mndass 13065) and has a two-sided neutral element (see mndid 13066). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremsgrpidmndm 13061* A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
 
Theoremmndsgrp 13062 A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
 
Theoremmndmgm 13063 A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
 
Theoremmndcl 13064 Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremmndass 13065 A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremmndid 13066* A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmndideu 13067* The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmnd32g 13068 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremmnd12g 13069 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
 
Theoremmnd4g 13070 Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 
Theoremmndidcl 13071 The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Mnd → 0𝐵)
 
Theoremmndbn0 13072 The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 13071). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Mnd → 𝐵 ≠ ∅)
 
Theoremhashfinmndnn 13073 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → (♯‘𝐵) ∈ ℕ)
 
Theoremmndplusf 13074 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremmndlrid 13075 A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremmndlid 13076 The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
 
Theoremmndrid 13077 The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
 
Theoremismndd 13078* Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑𝐺 ∈ Mnd)
 
Theoremmndpfo 13079 The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndfo 13080 The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndpropd 13081* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
 
Theoremmndprop 13082 If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)
 
Theoremissubmnd 13083* Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
 
Theoremress0g 13084 0g is unaffected by restriction. This is a bit more generic than submnd0 13085. (Contributed by Thierry Arnoux, 23-Oct-2017.)
𝑆 = (𝑅s 𝐴)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
 
Theoremsubmnd0 13085 The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))
 
Theoremmndinvmod 13086* Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐴𝐵)       (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
 
Theoremmnd1 13087 The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mnd)
 
Theoremmnd1id 13088 The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉 → (0g𝑀) = 𝐼)
 
7.1.6  Monoid homomorphisms and submonoids
 
Syntaxcmhm 13089 Hom-set generator class for monoids.
class MndHom
 
Syntaxcsubmnd 13090 Class function taking a monoid to its lattice of submonoids.
class SubMnd
 
Definitiondf-mhm 13091* A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
 
Definitiondf-submnd 13092* A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
 
Theoremismhm 13093* Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)    &    0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
 
Theoremmhmex 13094 The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V)
 
Theoremmhmrcl1 13095 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
 
Theoremmhmrcl2 13096 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
 
Theoremmhmf 13097 A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)
 
Theoremmhmpropd 13098* Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
(𝜑𝐵 = (Base‘𝐽))    &   (𝜑𝐶 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐶 = (Base‘𝑀))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))       (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
 
Theoremmhmlin 13099 A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &    = (+g𝑇)       ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
 
Theoremmhm0 13100 A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >