ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add42i GIF version

Theorem add42i 8185
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
add.1 𝐴 ∈ ℂ
add.2 𝐵 ∈ ℂ
add.3 𝐶 ∈ ℂ
add4.4 𝐷 ∈ ℂ
Assertion
Ref Expression
add42i ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))

Proof of Theorem add42i
StepHypRef Expression
1 add.1 . . 3 𝐴 ∈ ℂ
2 add.2 . . 3 𝐵 ∈ ℂ
3 add.3 . . 3 𝐶 ∈ ℂ
4 add4.4 . . 3 𝐷 ∈ ℂ
51, 2, 3, 4add4i 8184 . 2 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))
62, 4addcomi 8163 . . 3 (𝐵 + 𝐷) = (𝐷 + 𝐵)
76oveq2i 5929 . 2 ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
85, 7eqtri 2214 1 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870   + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-addcl 7968  ax-addcom 7972  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator