ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add42i GIF version

Theorem add42i 8300
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
add.1 𝐴 ∈ ℂ
add.2 𝐵 ∈ ℂ
add.3 𝐶 ∈ ℂ
add4.4 𝐷 ∈ ℂ
Assertion
Ref Expression
add42i ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))

Proof of Theorem add42i
StepHypRef Expression
1 add.1 . . 3 𝐴 ∈ ℂ
2 add.2 . . 3 𝐵 ∈ ℂ
3 add.3 . . 3 𝐶 ∈ ℂ
4 add4.4 . . 3 𝐷 ∈ ℂ
51, 2, 3, 4add4i 8299 . 2 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))
62, 4addcomi 8278 . . 3 (𝐵 + 𝐷) = (𝐷 + 𝐵)
76oveq2i 6005 . 2 ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
85, 7eqtri 2250 1 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 5994  cc 7985   + caddc 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-addcl 8083  ax-addcom 8087  ax-addass 8089
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5274  df-fv 5322  df-ov 5997
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator