![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > add42i | GIF version |
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
add.1 | ⊢ 𝐴 ∈ ℂ |
add.2 | ⊢ 𝐵 ∈ ℂ |
add.3 | ⊢ 𝐶 ∈ ℂ |
add4.4 | ⊢ 𝐷 ∈ ℂ |
Ref | Expression |
---|---|
add42i | ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
2 | add.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
3 | add.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
4 | add4.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
5 | 1, 2, 3, 4 | add4i 8124 | . 2 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
6 | 2, 4 | addcomi 8103 | . . 3 ⊢ (𝐵 + 𝐷) = (𝐷 + 𝐵) |
7 | 6 | oveq2i 5888 | . 2 ⊢ ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
8 | 5, 7 | eqtri 2198 | 1 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 + caddc 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-addcl 7909 ax-addcom 7913 ax-addass 7915 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5880 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |