ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add42i GIF version

Theorem add42i 8125
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
add.1 𝐴 ∈ ℂ
add.2 𝐵 ∈ ℂ
add.3 𝐶 ∈ ℂ
add4.4 𝐷 ∈ ℂ
Assertion
Ref Expression
add42i ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))

Proof of Theorem add42i
StepHypRef Expression
1 add.1 . . 3 𝐴 ∈ ℂ
2 add.2 . . 3 𝐵 ∈ ℂ
3 add.3 . . 3 𝐶 ∈ ℂ
4 add4.4 . . 3 𝐷 ∈ ℂ
51, 2, 3, 4add4i 8124 . 2 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))
62, 4addcomi 8103 . . 3 (𝐵 + 𝐷) = (𝐷 + 𝐵)
76oveq2i 5888 . 2 ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
85, 7eqtri 2198 1 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  (class class class)co 5877  cc 7811   + caddc 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-addcl 7909  ax-addcom 7913  ax-addass 7915
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator