Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add42i | GIF version |
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
add.1 | ⊢ 𝐴 ∈ ℂ |
add.2 | ⊢ 𝐵 ∈ ℂ |
add.3 | ⊢ 𝐶 ∈ ℂ |
add4.4 | ⊢ 𝐷 ∈ ℂ |
Ref | Expression |
---|---|
add42i | ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
2 | add.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
3 | add.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
4 | add4.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
5 | 1, 2, 3, 4 | add4i 8063 | . 2 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
6 | 2, 4 | addcomi 8042 | . . 3 ⊢ (𝐵 + 𝐷) = (𝐷 + 𝐵) |
7 | 6 | oveq2i 5853 | . 2 ⊢ ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
8 | 5, 7 | eqtri 2186 | 1 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-addcl 7849 ax-addcom 7853 ax-addass 7855 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |