ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add42i GIF version

Theorem add42i 8085
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
Hypotheses
Ref Expression
add.1 𝐴 ∈ ℂ
add.2 𝐵 ∈ ℂ
add.3 𝐶 ∈ ℂ
add4.4 𝐷 ∈ ℂ
Assertion
Ref Expression
add42i ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))

Proof of Theorem add42i
StepHypRef Expression
1 add.1 . . 3 𝐴 ∈ ℂ
2 add.2 . . 3 𝐵 ∈ ℂ
3 add.3 . . 3 𝐶 ∈ ℂ
4 add4.4 . . 3 𝐷 ∈ ℂ
51, 2, 3, 4add4i 8084 . 2 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))
62, 4addcomi 8063 . . 3 (𝐵 + 𝐷) = (𝐷 + 𝐵)
76oveq2i 5864 . 2 ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
85, 7eqtri 2191 1 ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772   + caddc 7777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-addcl 7870  ax-addcom 7874  ax-addass 7876
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator