| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > add42i | GIF version | ||
| Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| add.1 | ⊢ 𝐴 ∈ ℂ |
| add.2 | ⊢ 𝐵 ∈ ℂ |
| add.3 | ⊢ 𝐶 ∈ ℂ |
| add4.4 | ⊢ 𝐷 ∈ ℂ |
| Ref | Expression |
|---|---|
| add42i | ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 2 | add.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 3 | add.3 | . . 3 ⊢ 𝐶 ∈ ℂ | |
| 4 | add4.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
| 5 | 1, 2, 3, 4 | add4i 8299 | . 2 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
| 6 | 2, 4 | addcomi 8278 | . . 3 ⊢ (𝐵 + 𝐷) = (𝐷 + 𝐵) |
| 7 | 6 | oveq2i 6005 | . 2 ⊢ ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
| 8 | 5, 7 | eqtri 2250 | 1 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 5994 ℂcc 7985 + caddc 7990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-addcl 8083 ax-addcom 8087 ax-addass 8089 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5274 df-fv 5322 df-ov 5997 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |