ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcomli GIF version

Theorem addcomli 8043
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
addcomli.2 (𝐴 + 𝐵) = 𝐶
Assertion
Ref Expression
addcomli (𝐵 + 𝐴) = 𝐶

Proof of Theorem addcomli
StepHypRef Expression
1 mul.2 . . 3 𝐵 ∈ ℂ
2 mul.1 . . 3 𝐴 ∈ ℂ
31, 2addcomi 8042 . 2 (𝐵 + 𝐴) = (𝐴 + 𝐵)
4 addcomli.2 . 2 (𝐴 + 𝐵) = 𝐶
53, 4eqtri 2186 1 (𝐵 + 𝐴) = 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147  ax-addcom 7853
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  negsubdi2i  8184  1p2e3  8991  peano2z  9227  4t4e16  9420  6t3e18  9426  6t5e30  9428  7t3e21  9431  7t4e28  9432  7t6e42  9434  7t7e49  9435  8t3e24  9437  8t4e32  9438  8t5e40  9439  8t8e64  9442  9t3e27  9444  9t4e36  9445  9t5e45  9446  9t6e54  9447  9t7e63  9448  9t8e72  9449  9t9e81  9450  4bc3eq4  10686  n2dvdsm1  11850  6gcd4e2  11928  eulerid  13373  cosq23lt0  13404  binom4  13547  lgsdir2lem1  13579  ex-exp  13618  ex-bc  13620  ex-gcd  13622
  Copyright terms: Public domain W3C validator