Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcomli | GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 8042 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2186 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 ax-addcom 7853 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: negsubdi2i 8184 1p2e3 8991 peano2z 9227 4t4e16 9420 6t3e18 9426 6t5e30 9428 7t3e21 9431 7t4e28 9432 7t6e42 9434 7t7e49 9435 8t3e24 9437 8t4e32 9438 8t5e40 9439 8t8e64 9442 9t3e27 9444 9t4e36 9445 9t5e45 9446 9t6e54 9447 9t7e63 9448 9t8e72 9449 9t9e81 9450 4bc3eq4 10686 n2dvdsm1 11850 6gcd4e2 11928 eulerid 13373 cosq23lt0 13404 binom4 13547 lgsdir2lem1 13579 ex-exp 13618 ex-bc 13620 ex-gcd 13622 |
Copyright terms: Public domain | W3C validator |