![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomli | GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 8165 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2214 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 ax-addcom 7974 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: negsubdi2i 8307 1p2e3 9119 peano2z 9356 4t4e16 9549 6t3e18 9555 6t5e30 9557 7t3e21 9560 7t4e28 9561 7t6e42 9563 7t7e49 9564 8t3e24 9566 8t4e32 9567 8t5e40 9568 8t8e64 9571 9t3e27 9573 9t4e36 9574 9t5e45 9575 9t6e54 9576 9t7e63 9577 9t8e72 9578 9t9e81 9579 4bc3eq4 10847 n2dvdsm1 12057 6gcd4e2 12135 eulerid 14978 cosq23lt0 15009 binom4 15152 lgsdir2lem1 15185 m1lgs 15242 2lgsoddprmlem3d 15267 ex-exp 15289 ex-bc 15291 ex-gcd 15293 |
Copyright terms: Public domain | W3C validator |