| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 8223 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2227 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 ax-addcom 8032 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: negsubdi2i 8365 1p2e3 9178 peano2z 9415 4t4e16 9609 6t3e18 9615 6t5e30 9617 7t3e21 9620 7t4e28 9621 7t6e42 9623 7t7e49 9624 8t3e24 9626 8t4e32 9627 8t5e40 9628 8t8e64 9631 9t3e27 9633 9t4e36 9634 9t5e45 9635 9t6e54 9636 9t7e63 9637 9t8e72 9638 9t9e81 9639 4bc3eq4 10925 n2dvdsm1 12268 bitsfzo 12310 6gcd4e2 12360 gcdi 12787 2exp8 12802 2exp16 12804 eulerid 15318 cosq23lt0 15349 binom4 15495 lgsdir2lem1 15549 m1lgs 15606 2lgsoddprmlem3d 15631 ex-exp 15737 ex-bc 15739 ex-gcd 15741 |
| Copyright terms: Public domain | W3C validator |