| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 8189 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2217 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-addcom 7998 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: negsubdi2i 8331 1p2e3 9144 peano2z 9381 4t4e16 9574 6t3e18 9580 6t5e30 9582 7t3e21 9585 7t4e28 9586 7t6e42 9588 7t7e49 9589 8t3e24 9591 8t4e32 9592 8t5e40 9593 8t8e64 9596 9t3e27 9598 9t4e36 9599 9t5e45 9600 9t6e54 9601 9t7e63 9602 9t8e72 9603 9t9e81 9604 4bc3eq4 10884 n2dvdsm1 12097 bitsfzo 12139 6gcd4e2 12189 gcdi 12616 2exp8 12631 2exp16 12633 eulerid 15124 cosq23lt0 15155 binom4 15301 lgsdir2lem1 15355 m1lgs 15412 2lgsoddprmlem3d 15437 ex-exp 15459 ex-bc 15461 ex-gcd 15463 |
| Copyright terms: Public domain | W3C validator |