![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomli | GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 8163 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2214 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 ax-addcom 7972 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: negsubdi2i 8305 1p2e3 9116 peano2z 9353 4t4e16 9546 6t3e18 9552 6t5e30 9554 7t3e21 9557 7t4e28 9558 7t6e42 9560 7t7e49 9561 8t3e24 9563 8t4e32 9564 8t5e40 9565 8t8e64 9568 9t3e27 9570 9t4e36 9571 9t5e45 9572 9t6e54 9573 9t7e63 9574 9t8e72 9575 9t9e81 9576 4bc3eq4 10844 n2dvdsm1 12054 6gcd4e2 12132 eulerid 14937 cosq23lt0 14968 binom4 15111 lgsdir2lem1 15144 m1lgs 15192 2lgsoddprmlem3d 15198 ex-exp 15219 ex-bc 15221 ex-gcd 15223 |
Copyright terms: Public domain | W3C validator |