![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcomli | GIF version |
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
mul.2 | ⊢ 𝐵 ∈ ℂ |
addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | addcomi 7616 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2108 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 (class class class)co 5644 ℂcc 7338 + caddc 7343 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-4 1445 ax-17 1464 ax-ext 2070 ax-addcom 7435 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 |
This theorem is referenced by: negsubdi2i 7758 1p2e3 8540 peano2z 8776 4t4e16 8965 6t3e18 8971 6t5e30 8973 7t3e21 8976 7t4e28 8977 7t6e42 8979 7t7e49 8980 8t3e24 8982 8t4e32 8983 8t5e40 8984 8t8e64 8987 9t3e27 8989 9t4e36 8990 9t5e45 8991 9t6e54 8992 9t7e63 8993 9t8e72 8994 9t9e81 8995 4bc3eq4 10169 n2dvdsm1 11178 6gcd4e2 11249 ex-exp 11537 ex-bc 11539 ex-gcd 11541 |
Copyright terms: Public domain | W3C validator |