| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 8258 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2230 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-4 1536 ax-17 1552 ax-ext 2191 ax-addcom 8067 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 |
| This theorem is referenced by: negsubdi2i 8400 1p2e3 9213 peano2z 9450 4t4e16 9644 6t3e18 9650 6t5e30 9652 7t3e21 9655 7t4e28 9656 7t6e42 9658 7t7e49 9659 8t3e24 9661 8t4e32 9662 8t5e40 9663 8t8e64 9666 9t3e27 9668 9t4e36 9669 9t5e45 9670 9t6e54 9671 9t7e63 9672 9t8e72 9673 9t9e81 9674 4bc3eq4 10962 n2dvdsm1 12390 bitsfzo 12432 6gcd4e2 12482 gcdi 12909 2exp8 12924 2exp16 12926 eulerid 15441 cosq23lt0 15472 binom4 15618 lgsdir2lem1 15672 m1lgs 15729 2lgsoddprmlem3d 15754 ex-exp 16001 ex-bc 16003 ex-gcd 16005 |
| Copyright terms: Public domain | W3C validator |