| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcomli | GIF version | ||
| Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| addcomli.2 | ⊢ (𝐴 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| addcomli | ⊢ (𝐵 + 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | mul.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | addcomi 8298 | . 2 ⊢ (𝐵 + 𝐴) = (𝐴 + 𝐵) |
| 4 | addcomli.2 | . 2 ⊢ (𝐴 + 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2250 | 1 ⊢ (𝐵 + 𝐴) = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 ax-addcom 8107 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: negsubdi2i 8440 1p2e3 9253 peano2z 9490 4t4e16 9684 6t3e18 9690 6t5e30 9692 7t3e21 9695 7t4e28 9696 7t6e42 9698 7t7e49 9699 8t3e24 9701 8t4e32 9702 8t5e40 9703 8t8e64 9706 9t3e27 9708 9t4e36 9709 9t5e45 9710 9t6e54 9711 9t7e63 9712 9t8e72 9713 9t9e81 9714 4bc3eq4 11003 n2dvdsm1 12432 bitsfzo 12474 6gcd4e2 12524 gcdi 12951 2exp8 12966 2exp16 12968 eulerid 15484 cosq23lt0 15515 binom4 15661 lgsdir2lem1 15715 m1lgs 15772 2lgsoddprmlem3d 15797 ex-exp 16115 ex-bc 16117 ex-gcd 16119 |
| Copyright terms: Public domain | W3C validator |