ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztpval GIF version

Theorem fztpval 10119
Description: Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fztpval
StepHypRef Expression
1 1z 9314 . . . . 5 1 ∈ ℤ
2 fztp 10114 . . . . 5 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
31, 2ax-mp 5 . . . 4 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
4 df-3 9014 . . . . . 6 3 = (2 + 1)
5 2cn 9025 . . . . . . 7 2 ∈ ℂ
6 ax-1cn 7939 . . . . . . 7 1 ∈ ℂ
75, 6addcomi 8136 . . . . . 6 (2 + 1) = (1 + 2)
84, 7eqtri 2210 . . . . 5 3 = (1 + 2)
98oveq2i 5911 . . . 4 (1...3) = (1...(1 + 2))
10 tpeq3 3698 . . . . . 6 (3 = (1 + 2) → {1, 2, 3} = {1, 2, (1 + 2)})
118, 10ax-mp 5 . . . . 5 {1, 2, 3} = {1, 2, (1 + 2)}
12 df-2 9013 . . . . . 6 2 = (1 + 1)
13 tpeq2 3697 . . . . . 6 (2 = (1 + 1) → {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)})
1412, 13ax-mp 5 . . . . 5 {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)}
1511, 14eqtri 2210 . . . 4 {1, 2, 3} = {1, (1 + 1), (1 + 2)}
163, 9, 153eqtr4i 2220 . . 3 (1...3) = {1, 2, 3}
1716raleqi 2690 . 2 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)))
18 1ex 7987 . . 3 1 ∈ V
19 2ex 9026 . . 3 2 ∈ V
20 3ex 9030 . . 3 3 ∈ V
21 fveq2 5537 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
22 iftrue 3554 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐴)
2321, 22eqeq12d 2204 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘1) = 𝐴))
24 fveq2 5537 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
25 1re 7991 . . . . . . . 8 1 ∈ ℝ
26 1lt2 9123 . . . . . . . 8 1 < 2
2725, 26gtneii 8088 . . . . . . 7 2 ≠ 1
28 neeq1 2373 . . . . . . 7 (𝑥 = 2 → (𝑥 ≠ 1 ↔ 2 ≠ 1))
2927, 28mpbiri 168 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
30 ifnefalse 3560 . . . . . 6 (𝑥 ≠ 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
3129, 30syl 14 . . . . 5 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
32 iftrue 3554 . . . . 5 (𝑥 = 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐵)
3331, 32eqtrd 2222 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐵)
3424, 33eqeq12d 2204 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘2) = 𝐵))
35 fveq2 5537 . . . 4 (𝑥 = 3 → (𝐹𝑥) = (𝐹‘3))
36 1lt3 9125 . . . . . . . 8 1 < 3
3725, 36gtneii 8088 . . . . . . 7 3 ≠ 1
38 neeq1 2373 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 1 ↔ 3 ≠ 1))
3937, 38mpbiri 168 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 1)
4039, 30syl 14 . . . . 5 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
41 2re 9024 . . . . . . . 8 2 ∈ ℝ
42 2lt3 9124 . . . . . . . 8 2 < 3
4341, 42gtneii 8088 . . . . . . 7 3 ≠ 2
44 neeq1 2373 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 2 ↔ 3 ≠ 2))
4543, 44mpbiri 168 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 2)
46 ifnefalse 3560 . . . . . 6 (𝑥 ≠ 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4745, 46syl 14 . . . . 5 (𝑥 = 3 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4840, 47eqtrd 2222 . . . 4 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐶)
4935, 48eqeq12d 2204 . . 3 (𝑥 = 3 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘3) = 𝐶))
5018, 19, 20, 23, 34, 49raltp 3667 . 2 (∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
5117, 50bitri 184 1 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 980   = wceq 1364  wcel 2160  wne 2360  wral 2468  ifcif 3549  {ctp 3612  cfv 5238  (class class class)co 5900  1c1 7847   + caddc 7849  2c2 9005  3c3 9006  cz 9288  ...cfz 10044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-tp 3618  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-inn 8955  df-2 9013  df-3 9014  df-n0 9212  df-z 9289  df-uz 9564  df-fz 10045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator