Proof of Theorem fztpval
| Step | Hyp | Ref
 | Expression | 
| 1 |   | 1z 9352 | 
. . . . 5
⊢ 1 ∈
ℤ | 
| 2 |   | fztp 10153 | 
. . . . 5
⊢ (1 ∈
ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}) | 
| 3 | 1, 2 | ax-mp 5 | 
. . . 4
⊢ (1...(1 +
2)) = {1, (1 + 1), (1 + 2)} | 
| 4 |   | df-3 9050 | 
. . . . . 6
⊢ 3 = (2 +
1) | 
| 5 |   | 2cn 9061 | 
. . . . . . 7
⊢ 2 ∈
ℂ | 
| 6 |   | ax-1cn 7972 | 
. . . . . . 7
⊢ 1 ∈
ℂ | 
| 7 | 5, 6 | addcomi 8170 | 
. . . . . 6
⊢ (2 + 1) =
(1 + 2) | 
| 8 | 4, 7 | eqtri 2217 | 
. . . . 5
⊢ 3 = (1 +
2) | 
| 9 | 8 | oveq2i 5933 | 
. . . 4
⊢ (1...3) =
(1...(1 + 2)) | 
| 10 |   | tpeq3 3710 | 
. . . . . 6
⊢ (3 = (1 +
2) → {1, 2, 3} = {1, 2, (1 + 2)}) | 
| 11 | 8, 10 | ax-mp 5 | 
. . . . 5
⊢ {1, 2, 3}
= {1, 2, (1 + 2)} | 
| 12 |   | df-2 9049 | 
. . . . . 6
⊢ 2 = (1 +
1) | 
| 13 |   | tpeq2 3709 | 
. . . . . 6
⊢ (2 = (1 +
1) → {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)}) | 
| 14 | 12, 13 | ax-mp 5 | 
. . . . 5
⊢ {1, 2, (1
+ 2)} = {1, (1 + 1), (1 + 2)} | 
| 15 | 11, 14 | eqtri 2217 | 
. . . 4
⊢ {1, 2, 3}
= {1, (1 + 1), (1 + 2)} | 
| 16 | 3, 9, 15 | 3eqtr4i 2227 | 
. . 3
⊢ (1...3) =
{1, 2, 3} | 
| 17 | 16 | raleqi 2697 | 
. 2
⊢
(∀𝑥 ∈
(1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ∀𝑥 ∈ {1, 2, 3} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶))) | 
| 18 |   | 1ex 8021 | 
. . 3
⊢ 1 ∈
V | 
| 19 |   | 2ex 9062 | 
. . 3
⊢ 2 ∈
V | 
| 20 |   | 3ex 9066 | 
. . 3
⊢ 3 ∈
V | 
| 21 |   | fveq2 5558 | 
. . . 4
⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | 
| 22 |   | iftrue 3566 | 
. . . 4
⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐴) | 
| 23 | 21, 22 | eqeq12d 2211 | 
. . 3
⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘1) = 𝐴)) | 
| 24 |   | fveq2 5558 | 
. . . 4
⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) | 
| 25 |   | 1re 8025 | 
. . . . . . . 8
⊢ 1 ∈
ℝ | 
| 26 |   | 1lt2 9160 | 
. . . . . . . 8
⊢ 1 <
2 | 
| 27 | 25, 26 | gtneii 8122 | 
. . . . . . 7
⊢ 2 ≠
1 | 
| 28 |   | neeq1 2380 | 
. . . . . . 7
⊢ (𝑥 = 2 → (𝑥 ≠ 1 ↔ 2 ≠ 1)) | 
| 29 | 27, 28 | mpbiri 168 | 
. . . . . 6
⊢ (𝑥 = 2 → 𝑥 ≠ 1) | 
| 30 |   | ifnefalse 3572 | 
. . . . . 6
⊢ (𝑥 ≠ 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶)) | 
| 31 | 29, 30 | syl 14 | 
. . . . 5
⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶)) | 
| 32 |   | iftrue 3566 | 
. . . . 5
⊢ (𝑥 = 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐵) | 
| 33 | 31, 32 | eqtrd 2229 | 
. . . 4
⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐵) | 
| 34 | 24, 33 | eqeq12d 2211 | 
. . 3
⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘2) = 𝐵)) | 
| 35 |   | fveq2 5558 | 
. . . 4
⊢ (𝑥 = 3 → (𝐹‘𝑥) = (𝐹‘3)) | 
| 36 |   | 1lt3 9162 | 
. . . . . . . 8
⊢ 1 <
3 | 
| 37 | 25, 36 | gtneii 8122 | 
. . . . . . 7
⊢ 3 ≠
1 | 
| 38 |   | neeq1 2380 | 
. . . . . . 7
⊢ (𝑥 = 3 → (𝑥 ≠ 1 ↔ 3 ≠ 1)) | 
| 39 | 37, 38 | mpbiri 168 | 
. . . . . 6
⊢ (𝑥 = 3 → 𝑥 ≠ 1) | 
| 40 | 39, 30 | syl 14 | 
. . . . 5
⊢ (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶)) | 
| 41 |   | 2re 9060 | 
. . . . . . . 8
⊢ 2 ∈
ℝ | 
| 42 |   | 2lt3 9161 | 
. . . . . . . 8
⊢ 2 <
3 | 
| 43 | 41, 42 | gtneii 8122 | 
. . . . . . 7
⊢ 3 ≠
2 | 
| 44 |   | neeq1 2380 | 
. . . . . . 7
⊢ (𝑥 = 3 → (𝑥 ≠ 2 ↔ 3 ≠ 2)) | 
| 45 | 43, 44 | mpbiri 168 | 
. . . . . 6
⊢ (𝑥 = 3 → 𝑥 ≠ 2) | 
| 46 |   | ifnefalse 3572 | 
. . . . . 6
⊢ (𝑥 ≠ 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶) | 
| 47 | 45, 46 | syl 14 | 
. . . . 5
⊢ (𝑥 = 3 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶) | 
| 48 | 40, 47 | eqtrd 2229 | 
. . . 4
⊢ (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐶) | 
| 49 | 35, 48 | eqeq12d 2211 | 
. . 3
⊢ (𝑥 = 3 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘3) = 𝐶)) | 
| 50 | 18, 19, 20, 23, 34, 49 | raltp 3679 | 
. 2
⊢
(∀𝑥 ∈
{1, 2, 3} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) | 
| 51 | 17, 50 | bitri 184 | 
1
⊢
(∀𝑥 ∈
(1...3)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶)) |