ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztpval GIF version

Theorem fztpval 10149
Description: Two ways of defining the first three values of a sequence on . (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
fztpval (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹

Proof of Theorem fztpval
StepHypRef Expression
1 1z 9343 . . . . 5 1 ∈ ℤ
2 fztp 10144 . . . . 5 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
31, 2ax-mp 5 . . . 4 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
4 df-3 9042 . . . . . 6 3 = (2 + 1)
5 2cn 9053 . . . . . . 7 2 ∈ ℂ
6 ax-1cn 7965 . . . . . . 7 1 ∈ ℂ
75, 6addcomi 8163 . . . . . 6 (2 + 1) = (1 + 2)
84, 7eqtri 2214 . . . . 5 3 = (1 + 2)
98oveq2i 5929 . . . 4 (1...3) = (1...(1 + 2))
10 tpeq3 3706 . . . . . 6 (3 = (1 + 2) → {1, 2, 3} = {1, 2, (1 + 2)})
118, 10ax-mp 5 . . . . 5 {1, 2, 3} = {1, 2, (1 + 2)}
12 df-2 9041 . . . . . 6 2 = (1 + 1)
13 tpeq2 3705 . . . . . 6 (2 = (1 + 1) → {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)})
1412, 13ax-mp 5 . . . . 5 {1, 2, (1 + 2)} = {1, (1 + 1), (1 + 2)}
1511, 14eqtri 2214 . . . 4 {1, 2, 3} = {1, (1 + 1), (1 + 2)}
163, 9, 153eqtr4i 2224 . . 3 (1...3) = {1, 2, 3}
1716raleqi 2694 . 2 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)))
18 1ex 8014 . . 3 1 ∈ V
19 2ex 9054 . . 3 2 ∈ V
20 3ex 9058 . . 3 3 ∈ V
21 fveq2 5554 . . . 4 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
22 iftrue 3562 . . . 4 (𝑥 = 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐴)
2321, 22eqeq12d 2208 . . 3 (𝑥 = 1 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘1) = 𝐴))
24 fveq2 5554 . . . 4 (𝑥 = 2 → (𝐹𝑥) = (𝐹‘2))
25 1re 8018 . . . . . . . 8 1 ∈ ℝ
26 1lt2 9151 . . . . . . . 8 1 < 2
2725, 26gtneii 8115 . . . . . . 7 2 ≠ 1
28 neeq1 2377 . . . . . . 7 (𝑥 = 2 → (𝑥 ≠ 1 ↔ 2 ≠ 1))
2927, 28mpbiri 168 . . . . . 6 (𝑥 = 2 → 𝑥 ≠ 1)
30 ifnefalse 3568 . . . . . 6 (𝑥 ≠ 1 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
3129, 30syl 14 . . . . 5 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
32 iftrue 3562 . . . . 5 (𝑥 = 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐵)
3331, 32eqtrd 2226 . . . 4 (𝑥 = 2 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐵)
3424, 33eqeq12d 2208 . . 3 (𝑥 = 2 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘2) = 𝐵))
35 fveq2 5554 . . . 4 (𝑥 = 3 → (𝐹𝑥) = (𝐹‘3))
36 1lt3 9153 . . . . . . . 8 1 < 3
3725, 36gtneii 8115 . . . . . . 7 3 ≠ 1
38 neeq1 2377 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 1 ↔ 3 ≠ 1))
3937, 38mpbiri 168 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 1)
4039, 30syl 14 . . . . 5 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = if(𝑥 = 2, 𝐵, 𝐶))
41 2re 9052 . . . . . . . 8 2 ∈ ℝ
42 2lt3 9152 . . . . . . . 8 2 < 3
4341, 42gtneii 8115 . . . . . . 7 3 ≠ 2
44 neeq1 2377 . . . . . . 7 (𝑥 = 3 → (𝑥 ≠ 2 ↔ 3 ≠ 2))
4543, 44mpbiri 168 . . . . . 6 (𝑥 = 3 → 𝑥 ≠ 2)
46 ifnefalse 3568 . . . . . 6 (𝑥 ≠ 2 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4745, 46syl 14 . . . . 5 (𝑥 = 3 → if(𝑥 = 2, 𝐵, 𝐶) = 𝐶)
4840, 47eqtrd 2226 . . . 4 (𝑥 = 3 → if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) = 𝐶)
4935, 48eqeq12d 2208 . . 3 (𝑥 = 3 → ((𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ (𝐹‘3) = 𝐶))
5018, 19, 20, 23, 34, 49raltp 3675 . 2 (∀𝑥 ∈ {1, 2, 3} (𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
5117, 50bitri 184 1 (∀𝑥 ∈ (1...3)(𝐹𝑥) = if(𝑥 = 1, 𝐴, if(𝑥 = 2, 𝐵, 𝐶)) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵 ∧ (𝐹‘3) = 𝐶))
Colors of variables: wff set class
Syntax hints:  wb 105  w3a 980   = wceq 1364  wcel 2164  wne 2364  wral 2472  ifcif 3557  {ctp 3620  cfv 5254  (class class class)co 5918  1c1 7873   + caddc 7875  2c2 9033  3c3 9034  cz 9317  ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-3 9042  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator