![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzo0to42pr | GIF version |
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 9212 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 9214 | . . . 4 ⊢ 4 ∈ ℕ0 | |
3 | 2re 9008 | . . . . 5 ⊢ 2 ∈ ℝ | |
4 | 4re 9015 | . . . . 5 ⊢ 4 ∈ ℝ | |
5 | 2lt4 9111 | . . . . 5 ⊢ 2 < 4 | |
6 | 3, 4, 5 | ltleii 8079 | . . . 4 ⊢ 2 ≤ 4 |
7 | elfz2nn0 10131 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
8 | 1, 2, 6, 7 | mpbir3an 1181 | . . 3 ⊢ 2 ∈ (0...4) |
9 | fzosplit 10196 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
11 | fzo0to2pr 10237 | . . 3 ⊢ (0..^2) = {0, 1} | |
12 | 4z 9302 | . . . . 5 ⊢ 4 ∈ ℤ | |
13 | fzoval 10167 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
15 | 4cn 9016 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
16 | ax-1cn 7923 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
17 | 3cn 9013 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
18 | df-4 8999 | . . . . . . . . . 10 ⊢ 4 = (3 + 1) | |
19 | 17, 16 | addcomi 8120 | . . . . . . . . . 10 ⊢ (3 + 1) = (1 + 3) |
20 | 18, 19 | eqtri 2210 | . . . . . . . . 9 ⊢ 4 = (1 + 3) |
21 | 20 | eqcomi 2193 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
22 | 15, 16, 17, 21 | subaddrii 8265 | . . . . . . 7 ⊢ (4 − 1) = 3 |
23 | df-3 8998 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
24 | 22, 23 | eqtri 2210 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
25 | 24 | oveq2i 5902 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
26 | 2z 9300 | . . . . . 6 ⊢ 2 ∈ ℤ | |
27 | fzpr 10096 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
29 | 25, 28 | eqtri 2210 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
30 | 23 | eqcomi 2193 | . . . . 5 ⊢ (2 + 1) = 3 |
31 | 30 | preq2i 3688 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
32 | 14, 29, 31 | 3eqtri 2214 | . . 3 ⊢ (2..^4) = {2, 3} |
33 | 11, 32 | uneq12i 3302 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
34 | 10, 33 | eqtri 2210 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 ∪ cun 3142 {cpr 3608 class class class wbr 4018 (class class class)co 5891 0cc0 7830 1c1 7831 + caddc 7833 ≤ cle 8012 − cmin 8147 2c2 8989 3c3 8990 4c4 8991 ℕ0cn0 9195 ℤcz 9272 ...cfz 10027 ..^cfzo 10161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7921 ax-resscn 7922 ax-1cn 7923 ax-1re 7924 ax-icn 7925 ax-addcl 7926 ax-addrcl 7927 ax-mulcl 7928 ax-addcom 7930 ax-addass 7932 ax-distr 7934 ax-i2m1 7935 ax-0lt1 7936 ax-0id 7938 ax-rnegex 7939 ax-cnre 7941 ax-pre-ltirr 7942 ax-pre-ltwlin 7943 ax-pre-lttrn 7944 ax-pre-apti 7945 ax-pre-ltadd 7946 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-pnf 8013 df-mnf 8014 df-xr 8015 df-ltxr 8016 df-le 8017 df-sub 8149 df-neg 8150 df-inn 8939 df-2 8997 df-3 8998 df-4 8999 df-n0 9196 df-z 9273 df-uz 9548 df-fz 10028 df-fzo 10162 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |