Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzo0to42pr | GIF version |
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 9127 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 9129 | . . . 4 ⊢ 4 ∈ ℕ0 | |
3 | 2re 8923 | . . . . 5 ⊢ 2 ∈ ℝ | |
4 | 4re 8930 | . . . . 5 ⊢ 4 ∈ ℝ | |
5 | 2lt4 9026 | . . . . 5 ⊢ 2 < 4 | |
6 | 3, 4, 5 | ltleii 7997 | . . . 4 ⊢ 2 ≤ 4 |
7 | elfz2nn0 10043 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
8 | 1, 2, 6, 7 | mpbir3an 1169 | . . 3 ⊢ 2 ∈ (0...4) |
9 | fzosplit 10108 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
11 | fzo0to2pr 10149 | . . 3 ⊢ (0..^2) = {0, 1} | |
12 | 4z 9217 | . . . . 5 ⊢ 4 ∈ ℤ | |
13 | fzoval 10079 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
15 | 4cn 8931 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
16 | ax-1cn 7842 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
17 | 3cn 8928 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
18 | df-4 8914 | . . . . . . . . . 10 ⊢ 4 = (3 + 1) | |
19 | 17, 16 | addcomi 8038 | . . . . . . . . . 10 ⊢ (3 + 1) = (1 + 3) |
20 | 18, 19 | eqtri 2186 | . . . . . . . . 9 ⊢ 4 = (1 + 3) |
21 | 20 | eqcomi 2169 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
22 | 15, 16, 17, 21 | subaddrii 8183 | . . . . . . 7 ⊢ (4 − 1) = 3 |
23 | df-3 8913 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
24 | 22, 23 | eqtri 2186 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
25 | 24 | oveq2i 5852 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
26 | 2z 9215 | . . . . . 6 ⊢ 2 ∈ ℤ | |
27 | fzpr 10008 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
29 | 25, 28 | eqtri 2186 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
30 | 23 | eqcomi 2169 | . . . . 5 ⊢ (2 + 1) = 3 |
31 | 30 | preq2i 3656 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
32 | 14, 29, 31 | 3eqtri 2190 | . . 3 ⊢ (2..^4) = {2, 3} |
33 | 11, 32 | uneq12i 3273 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
34 | 10, 33 | eqtri 2186 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∪ cun 3113 {cpr 3576 class class class wbr 3981 (class class class)co 5841 0cc0 7749 1c1 7750 + caddc 7752 ≤ cle 7930 − cmin 8065 2c2 8904 3c3 8905 4c4 8906 ℕ0cn0 9110 ℤcz 9187 ...cfz 9940 ..^cfzo 10073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-2 8912 df-3 8913 df-4 8914 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 df-fzo 10074 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |