| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo0to42pr | GIF version | ||
| Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
| Ref | Expression |
|---|---|
| fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 9386 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 9388 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 3 | 2re 9180 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 4 | 4re 9187 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 5 | 2lt4 9284 | . . . . 5 ⊢ 2 < 4 | |
| 6 | 3, 4, 5 | ltleii 8249 | . . . 4 ⊢ 2 ≤ 4 |
| 7 | elfz2nn0 10308 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
| 8 | 1, 2, 6, 7 | mpbir3an 1203 | . . 3 ⊢ 2 ∈ (0...4) |
| 9 | fzosplit 10375 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
| 11 | fzo0to2pr 10424 | . . 3 ⊢ (0..^2) = {0, 1} | |
| 12 | 4z 9476 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 13 | fzoval 10344 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
| 15 | 4cn 9188 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
| 16 | ax-1cn 8092 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 17 | 3cn 9185 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 18 | df-4 9171 | . . . . . . . . . 10 ⊢ 4 = (3 + 1) | |
| 19 | 17, 16 | addcomi 8290 | . . . . . . . . . 10 ⊢ (3 + 1) = (1 + 3) |
| 20 | 18, 19 | eqtri 2250 | . . . . . . . . 9 ⊢ 4 = (1 + 3) |
| 21 | 20 | eqcomi 2233 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
| 22 | 15, 16, 17, 21 | subaddrii 8435 | . . . . . . 7 ⊢ (4 − 1) = 3 |
| 23 | df-3 9170 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
| 24 | 22, 23 | eqtri 2250 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
| 25 | 24 | oveq2i 6012 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
| 26 | 2z 9474 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 27 | fzpr 10273 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 29 | 25, 28 | eqtri 2250 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
| 30 | 23 | eqcomi 2233 | . . . . 5 ⊢ (2 + 1) = 3 |
| 31 | 30 | preq2i 3747 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 32 | 14, 29, 31 | 3eqtri 2254 | . . 3 ⊢ (2..^4) = {2, 3} |
| 33 | 11, 32 | uneq12i 3356 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
| 34 | 10, 33 | eqtri 2250 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {cpr 3667 class class class wbr 4083 (class class class)co 6001 0cc0 7999 1c1 8000 + caddc 8002 ≤ cle 8182 − cmin 8317 2c2 9161 3c3 9162 4c4 9163 ℕ0cn0 9369 ℤcz 9446 ...cfz 10204 ..^cfzo 10338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |