Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzo0to42pr | GIF version |
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 9090 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 9092 | . . . 4 ⊢ 4 ∈ ℕ0 | |
3 | 2re 8886 | . . . . 5 ⊢ 2 ∈ ℝ | |
4 | 4re 8893 | . . . . 5 ⊢ 4 ∈ ℝ | |
5 | 2lt4 8989 | . . . . 5 ⊢ 2 < 4 | |
6 | 3, 4, 5 | ltleii 7962 | . . . 4 ⊢ 2 ≤ 4 |
7 | elfz2nn0 9996 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
8 | 1, 2, 6, 7 | mpbir3an 1164 | . . 3 ⊢ 2 ∈ (0...4) |
9 | fzosplit 10058 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
11 | fzo0to2pr 10099 | . . 3 ⊢ (0..^2) = {0, 1} | |
12 | 4z 9180 | . . . . 5 ⊢ 4 ∈ ℤ | |
13 | fzoval 10029 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
15 | 4cn 8894 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
16 | ax-1cn 7808 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
17 | 3cn 8891 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
18 | df-4 8877 | . . . . . . . . . 10 ⊢ 4 = (3 + 1) | |
19 | 17, 16 | addcomi 8002 | . . . . . . . . . 10 ⊢ (3 + 1) = (1 + 3) |
20 | 18, 19 | eqtri 2178 | . . . . . . . . 9 ⊢ 4 = (1 + 3) |
21 | 20 | eqcomi 2161 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
22 | 15, 16, 17, 21 | subaddrii 8147 | . . . . . . 7 ⊢ (4 − 1) = 3 |
23 | df-3 8876 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
24 | 22, 23 | eqtri 2178 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
25 | 24 | oveq2i 5829 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
26 | 2z 9178 | . . . . . 6 ⊢ 2 ∈ ℤ | |
27 | fzpr 9961 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
29 | 25, 28 | eqtri 2178 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
30 | 23 | eqcomi 2161 | . . . . 5 ⊢ (2 + 1) = 3 |
31 | 30 | preq2i 3640 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
32 | 14, 29, 31 | 3eqtri 2182 | . . 3 ⊢ (2..^4) = {2, 3} |
33 | 11, 32 | uneq12i 3259 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
34 | 10, 33 | eqtri 2178 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 ∪ cun 3100 {cpr 3561 class class class wbr 3965 (class class class)co 5818 0cc0 7715 1c1 7716 + caddc 7718 ≤ cle 7896 − cmin 8029 2c2 8867 3c3 8868 4c4 8869 ℕ0cn0 9073 ℤcz 9150 ...cfz 9894 ..^cfzo 10023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-n0 9074 df-z 9151 df-uz 9423 df-fz 9895 df-fzo 10024 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |