Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzo0to42pr | GIF version |
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 9152 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 9154 | . . . 4 ⊢ 4 ∈ ℕ0 | |
3 | 2re 8948 | . . . . 5 ⊢ 2 ∈ ℝ | |
4 | 4re 8955 | . . . . 5 ⊢ 4 ∈ ℝ | |
5 | 2lt4 9051 | . . . . 5 ⊢ 2 < 4 | |
6 | 3, 4, 5 | ltleii 8022 | . . . 4 ⊢ 2 ≤ 4 |
7 | elfz2nn0 10068 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
8 | 1, 2, 6, 7 | mpbir3an 1174 | . . 3 ⊢ 2 ∈ (0...4) |
9 | fzosplit 10133 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
11 | fzo0to2pr 10174 | . . 3 ⊢ (0..^2) = {0, 1} | |
12 | 4z 9242 | . . . . 5 ⊢ 4 ∈ ℤ | |
13 | fzoval 10104 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
15 | 4cn 8956 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
16 | ax-1cn 7867 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
17 | 3cn 8953 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
18 | df-4 8939 | . . . . . . . . . 10 ⊢ 4 = (3 + 1) | |
19 | 17, 16 | addcomi 8063 | . . . . . . . . . 10 ⊢ (3 + 1) = (1 + 3) |
20 | 18, 19 | eqtri 2191 | . . . . . . . . 9 ⊢ 4 = (1 + 3) |
21 | 20 | eqcomi 2174 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
22 | 15, 16, 17, 21 | subaddrii 8208 | . . . . . . 7 ⊢ (4 − 1) = 3 |
23 | df-3 8938 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
24 | 22, 23 | eqtri 2191 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
25 | 24 | oveq2i 5864 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
26 | 2z 9240 | . . . . . 6 ⊢ 2 ∈ ℤ | |
27 | fzpr 10033 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
29 | 25, 28 | eqtri 2191 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
30 | 23 | eqcomi 2174 | . . . . 5 ⊢ (2 + 1) = 3 |
31 | 30 | preq2i 3664 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
32 | 14, 29, 31 | 3eqtri 2195 | . . 3 ⊢ (2..^4) = {2, 3} |
33 | 11, 32 | uneq12i 3279 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
34 | 10, 33 | eqtri 2191 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {cpr 3584 class class class wbr 3989 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 ≤ cle 7955 − cmin 8090 2c2 8929 3c3 8930 4c4 8931 ℕ0cn0 9135 ℤcz 9212 ...cfz 9965 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |