| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzo0to42pr | GIF version | ||
| Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
| Ref | Expression |
|---|---|
| fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 9266 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 9268 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 3 | 2re 9060 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 4 | 4re 9067 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 5 | 2lt4 9164 | . . . . 5 ⊢ 2 < 4 | |
| 6 | 3, 4, 5 | ltleii 8129 | . . . 4 ⊢ 2 ≤ 4 |
| 7 | elfz2nn0 10187 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
| 8 | 1, 2, 6, 7 | mpbir3an 1181 | . . 3 ⊢ 2 ∈ (0...4) |
| 9 | fzosplit 10253 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
| 11 | fzo0to2pr 10294 | . . 3 ⊢ (0..^2) = {0, 1} | |
| 12 | 4z 9356 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 13 | fzoval 10223 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
| 15 | 4cn 9068 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
| 16 | ax-1cn 7972 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 17 | 3cn 9065 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
| 18 | df-4 9051 | . . . . . . . . . 10 ⊢ 4 = (3 + 1) | |
| 19 | 17, 16 | addcomi 8170 | . . . . . . . . . 10 ⊢ (3 + 1) = (1 + 3) |
| 20 | 18, 19 | eqtri 2217 | . . . . . . . . 9 ⊢ 4 = (1 + 3) |
| 21 | 20 | eqcomi 2200 | . . . . . . . 8 ⊢ (1 + 3) = 4 |
| 22 | 15, 16, 17, 21 | subaddrii 8315 | . . . . . . 7 ⊢ (4 − 1) = 3 |
| 23 | df-3 9050 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
| 24 | 22, 23 | eqtri 2217 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
| 25 | 24 | oveq2i 5933 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
| 26 | 2z 9354 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 27 | fzpr 10152 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 29 | 25, 28 | eqtri 2217 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
| 30 | 23 | eqcomi 2200 | . . . . 5 ⊢ (2 + 1) = 3 |
| 31 | 30 | preq2i 3703 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 32 | 14, 29, 31 | 3eqtri 2221 | . . 3 ⊢ (2..^4) = {2, 3} |
| 33 | 11, 32 | uneq12i 3315 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
| 34 | 10, 33 | eqtri 2217 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {cpr 3623 class class class wbr 4033 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 ≤ cle 8062 − cmin 8197 2c2 9041 3c3 9042 4c4 9043 ℕ0cn0 9249 ℤcz 9326 ...cfz 10083 ..^cfzo 10217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |