ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mvlladdi GIF version

Theorem mvlladdi 8004
Description: Move LHS left addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
mvlladdi.1 𝐴 ∈ ℂ
mvlladdi.2 𝐵 ∈ ℂ
mvlladdi.3 (𝐴 + 𝐵) = 𝐶
Assertion
Ref Expression
mvlladdi 𝐵 = (𝐶𝐴)

Proof of Theorem mvlladdi
StepHypRef Expression
1 mvlladdi.2 . . 3 𝐵 ∈ ℂ
2 mvlladdi.1 . . 3 𝐴 ∈ ℂ
31, 2pncan3oi 8002 . 2 ((𝐵 + 𝐴) − 𝐴) = 𝐵
42, 1addcomi 7930 . . . 4 (𝐴 + 𝐵) = (𝐵 + 𝐴)
5 mvlladdi.3 . . . 4 (𝐴 + 𝐵) = 𝐶
64, 5eqtr3i 2163 . . 3 (𝐵 + 𝐴) = 𝐶
76oveq1i 5792 . 2 ((𝐵 + 𝐴) − 𝐴) = (𝐶𝐴)
83, 7eqtr3i 2163 1 𝐵 = (𝐶𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1332  wcel 1481  (class class class)co 5782  cc 7642   + caddc 7647  cmin 7957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-setind 4460  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sub 7959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator