ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef01bndlem GIF version

Theorem ef01bndlem 12233
Description: Lemma for sin01bnd 12234 and cos01bnd 12235. (Contributed by Paul Chapman, 19-Jan-2008.)
Hypothesis
Ref Expression
ef01bnd.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef01bndlem (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) < ((𝐴↑4) / 6))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef01bndlem
StepHypRef Expression
1 ax-icn 8062 . . . . 5 i ∈ ℂ
2 0xr 8161 . . . . . . . 8 0 ∈ ℝ*
3 1re 8113 . . . . . . . 8 1 ∈ ℝ
4 elioc2 10100 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1)))
52, 3, 4mp2an 426 . . . . . . 7 (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴𝐴 ≤ 1))
65simp1bi 1017 . . . . . 6 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ)
76recnd 8143 . . . . 5 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℂ)
8 mulcl 8094 . . . . 5 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
91, 7, 8sylancr 414 . . . 4 (𝐴 ∈ (0(,]1) → (i · 𝐴) ∈ ℂ)
10 4nn0 9356 . . . 4 4 ∈ ℕ0
11 ef01bnd.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i · 𝐴)↑𝑛) / (!‘𝑛)))
1211eftlcl 12165 . . . 4 (((i · 𝐴) ∈ ℂ ∧ 4 ∈ ℕ0) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
139, 10, 12sylancl 413 . . 3 (𝐴 ∈ (0(,]1) → Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘) ∈ ℂ)
1413abscld 11658 . 2 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) ∈ ℝ)
15 reexpcl 10745 . . . 4 ((𝐴 ∈ ℝ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℝ)
166, 10, 15sylancl 413 . . 3 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ)
17 4re 9155 . . . . 5 4 ∈ ℝ
1817, 3readdcli 8127 . . . 4 (4 + 1) ∈ ℝ
19 faccl 10924 . . . . . 6 (4 ∈ ℕ0 → (!‘4) ∈ ℕ)
2010, 19ax-mp 5 . . . . 5 (!‘4) ∈ ℕ
21 4nn 9242 . . . . 5 4 ∈ ℕ
2220, 21nnmulcli 9100 . . . 4 ((!‘4) · 4) ∈ ℕ
23 nndivre 9114 . . . 4 (((4 + 1) ∈ ℝ ∧ ((!‘4) · 4) ∈ ℕ) → ((4 + 1) / ((!‘4) · 4)) ∈ ℝ)
2418, 22, 23mp2an 426 . . 3 ((4 + 1) / ((!‘4) · 4)) ∈ ℝ
25 remulcl 8095 . . 3 (((𝐴↑4) ∈ ℝ ∧ ((4 + 1) / ((!‘4) · 4)) ∈ ℝ) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) ∈ ℝ)
2616, 24, 25sylancl 413 . 2 (𝐴 ∈ (0(,]1) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) ∈ ℝ)
27 6nn 9244 . . 3 6 ∈ ℕ
28 nndivre 9114 . . 3 (((𝐴↑4) ∈ ℝ ∧ 6 ∈ ℕ) → ((𝐴↑4) / 6) ∈ ℝ)
2916, 27, 28sylancl 413 . 2 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) ∈ ℝ)
30 eqid 2209 . . . 4 (𝑛 ∈ ℕ0 ↦ (((abs‘(i · 𝐴))↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘(i · 𝐴))↑𝑛) / (!‘𝑛)))
31 eqid 2209 . . . 4 (𝑛 ∈ ℕ0 ↦ ((((abs‘(i · 𝐴))↑4) / (!‘4)) · ((1 / (4 + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘(i · 𝐴))↑4) / (!‘4)) · ((1 / (4 + 1))↑𝑛)))
3221a1i 9 . . . 4 (𝐴 ∈ (0(,]1) → 4 ∈ ℕ)
33 absmul 11546 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
341, 7, 33sylancr 414 . . . . . 6 (𝐴 ∈ (0(,]1) → (abs‘(i · 𝐴)) = ((abs‘i) · (abs‘𝐴)))
35 absi 11536 . . . . . . . 8 (abs‘i) = 1
3635oveq1i 5984 . . . . . . 7 ((abs‘i) · (abs‘𝐴)) = (1 · (abs‘𝐴))
375simp2bi 1018 . . . . . . . . . 10 (𝐴 ∈ (0(,]1) → 0 < 𝐴)
386, 37elrpd 9857 . . . . . . . . 9 (𝐴 ∈ (0(,]1) → 𝐴 ∈ ℝ+)
39 rpre 9824 . . . . . . . . . 10 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
40 rpge0 9830 . . . . . . . . . 10 (𝐴 ∈ ℝ+ → 0 ≤ 𝐴)
4139, 40absidd 11644 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (abs‘𝐴) = 𝐴)
4238, 41syl 14 . . . . . . . 8 (𝐴 ∈ (0(,]1) → (abs‘𝐴) = 𝐴)
4342oveq2d 5990 . . . . . . 7 (𝐴 ∈ (0(,]1) → (1 · (abs‘𝐴)) = (1 · 𝐴))
4436, 43eqtrid 2254 . . . . . 6 (𝐴 ∈ (0(,]1) → ((abs‘i) · (abs‘𝐴)) = (1 · 𝐴))
457mulid2d 8133 . . . . . 6 (𝐴 ∈ (0(,]1) → (1 · 𝐴) = 𝐴)
4634, 44, 453eqtrd 2246 . . . . 5 (𝐴 ∈ (0(,]1) → (abs‘(i · 𝐴)) = 𝐴)
475simp3bi 1019 . . . . 5 (𝐴 ∈ (0(,]1) → 𝐴 ≤ 1)
4846, 47eqbrtrd 4084 . . . 4 (𝐴 ∈ (0(,]1) → (abs‘(i · 𝐴)) ≤ 1)
4911, 30, 31, 32, 9, 48eftlub 12167 . . 3 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) ≤ (((abs‘(i · 𝐴))↑4) · ((4 + 1) / ((!‘4) · 4))))
5046oveq1d 5989 . . . 4 (𝐴 ∈ (0(,]1) → ((abs‘(i · 𝐴))↑4) = (𝐴↑4))
5150oveq1d 5989 . . 3 (𝐴 ∈ (0(,]1) → (((abs‘(i · 𝐴))↑4) · ((4 + 1) / ((!‘4) · 4))) = ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))))
5249, 51breqtrd 4088 . 2 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) ≤ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))))
53 3pos 9172 . . . . . . . . 9 0 < 3
54 0re 8114 . . . . . . . . . 10 0 ∈ ℝ
55 3re 9152 . . . . . . . . . 10 3 ∈ ℝ
56 5re 9157 . . . . . . . . . 10 5 ∈ ℝ
5754, 55, 56ltadd1i 8617 . . . . . . . . 9 (0 < 3 ↔ (0 + 5) < (3 + 5))
5853, 57mpbi 145 . . . . . . . 8 (0 + 5) < (3 + 5)
59 5cn 9158 . . . . . . . . 9 5 ∈ ℂ
6059addlidi 8257 . . . . . . . 8 (0 + 5) = 5
61 cu2 10827 . . . . . . . . 9 (2↑3) = 8
62 5p3e8 9226 . . . . . . . . 9 (5 + 3) = 8
63 3cn 9153 . . . . . . . . . 10 3 ∈ ℂ
6459, 63addcomi 8258 . . . . . . . . 9 (5 + 3) = (3 + 5)
6561, 62, 643eqtr2ri 2237 . . . . . . . 8 (3 + 5) = (2↑3)
6658, 60, 653brtr3i 4091 . . . . . . 7 5 < (2↑3)
67 2re 9148 . . . . . . . 8 2 ∈ ℝ
68 1le2 9287 . . . . . . . 8 1 ≤ 2
69 4z 9444 . . . . . . . . 9 4 ∈ ℤ
70 3lt4 9251 . . . . . . . . . 10 3 < 4
7155, 17, 70ltleii 8217 . . . . . . . . 9 3 ≤ 4
72 3z 9443 . . . . . . . . . 10 3 ∈ ℤ
7372eluz1i 9697 . . . . . . . . 9 (4 ∈ (ℤ‘3) ↔ (4 ∈ ℤ ∧ 3 ≤ 4))
7469, 71, 73mpbir2an 947 . . . . . . . 8 4 ∈ (ℤ‘3)
75 leexp2a 10781 . . . . . . . 8 ((2 ∈ ℝ ∧ 1 ≤ 2 ∧ 4 ∈ (ℤ‘3)) → (2↑3) ≤ (2↑4))
7667, 68, 74, 75mp3an 1352 . . . . . . 7 (2↑3) ≤ (2↑4)
77 8re 9163 . . . . . . . . 9 8 ∈ ℝ
7861, 77eqeltri 2282 . . . . . . . 8 (2↑3) ∈ ℝ
79 2nn 9240 . . . . . . . . . 10 2 ∈ ℕ
80 nnexpcl 10741 . . . . . . . . . 10 ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ)
8179, 10, 80mp2an 426 . . . . . . . . 9 (2↑4) ∈ ℕ
8281nnrei 9087 . . . . . . . 8 (2↑4) ∈ ℝ
8356, 78, 82ltletri 8221 . . . . . . 7 ((5 < (2↑3) ∧ (2↑3) ≤ (2↑4)) → 5 < (2↑4))
8466, 76, 83mp2an 426 . . . . . 6 5 < (2↑4)
85 6re 9159 . . . . . . . 8 6 ∈ ℝ
8685, 82remulcli 8128 . . . . . . 7 (6 · (2↑4)) ∈ ℝ
87 6pos 9179 . . . . . . . 8 0 < 6
8881nngt0i 9108 . . . . . . . 8 0 < (2↑4)
8985, 82, 87, 88mulgt0ii 8225 . . . . . . 7 0 < (6 · (2↑4))
9056, 82, 86, 89ltdiv1ii 9044 . . . . . 6 (5 < (2↑4) ↔ (5 / (6 · (2↑4))) < ((2↑4) / (6 · (2↑4))))
9184, 90mpbi 145 . . . . 5 (5 / (6 · (2↑4))) < ((2↑4) / (6 · (2↑4)))
92 df-5 9140 . . . . . 6 5 = (4 + 1)
93 df-4 9139 . . . . . . . . . . 11 4 = (3 + 1)
9493fveq2i 5606 . . . . . . . . . 10 (!‘4) = (!‘(3 + 1))
95 3nn0 9355 . . . . . . . . . . 11 3 ∈ ℕ0
96 facp1 10919 . . . . . . . . . . 11 (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1)))
9795, 96ax-mp 5 . . . . . . . . . 10 (!‘(3 + 1)) = ((!‘3) · (3 + 1))
98 sq2 10824 . . . . . . . . . . . 12 (2↑2) = 4
9998, 93eqtr2i 2231 . . . . . . . . . . 11 (3 + 1) = (2↑2)
10099oveq2i 5985 . . . . . . . . . 10 ((!‘3) · (3 + 1)) = ((!‘3) · (2↑2))
10194, 97, 1003eqtri 2234 . . . . . . . . 9 (!‘4) = ((!‘3) · (2↑2))
102101oveq1i 5984 . . . . . . . 8 ((!‘4) · (2↑2)) = (((!‘3) · (2↑2)) · (2↑2))
10398oveq2i 5985 . . . . . . . 8 ((!‘4) · (2↑2)) = ((!‘4) · 4)
104 fac3 10921 . . . . . . . . . 10 (!‘3) = 6
105 6cn 9160 . . . . . . . . . 10 6 ∈ ℂ
106104, 105eqeltri 2282 . . . . . . . . 9 (!‘3) ∈ ℂ
10717recni 8126 . . . . . . . . . 10 4 ∈ ℂ
10898, 107eqeltri 2282 . . . . . . . . 9 (2↑2) ∈ ℂ
109106, 108, 108mulassi 8123 . . . . . . . 8 (((!‘3) · (2↑2)) · (2↑2)) = ((!‘3) · ((2↑2) · (2↑2)))
110102, 103, 1093eqtr3i 2238 . . . . . . 7 ((!‘4) · 4) = ((!‘3) · ((2↑2) · (2↑2)))
111 2p2e4 9205 . . . . . . . . . 10 (2 + 2) = 4
112111oveq2i 5985 . . . . . . . . 9 (2↑(2 + 2)) = (2↑4)
113 2cn 9149 . . . . . . . . . 10 2 ∈ ℂ
114 2nn0 9354 . . . . . . . . . 10 2 ∈ ℕ0
115 expadd 10770 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0) → (2↑(2 + 2)) = ((2↑2) · (2↑2)))
116113, 114, 114, 115mp3an 1352 . . . . . . . . 9 (2↑(2 + 2)) = ((2↑2) · (2↑2))
117112, 116eqtr3i 2232 . . . . . . . 8 (2↑4) = ((2↑2) · (2↑2))
118117oveq2i 5985 . . . . . . 7 ((!‘3) · (2↑4)) = ((!‘3) · ((2↑2) · (2↑2)))
119104oveq1i 5984 . . . . . . 7 ((!‘3) · (2↑4)) = (6 · (2↑4))
120110, 118, 1193eqtr2ri 2237 . . . . . 6 (6 · (2↑4)) = ((!‘4) · 4)
12192, 120oveq12i 5986 . . . . 5 (5 / (6 · (2↑4))) = ((4 + 1) / ((!‘4) · 4))
12281nncni 9088 . . . . . . . 8 (2↑4) ∈ ℂ
123122mullidi 8117 . . . . . . 7 (1 · (2↑4)) = (2↑4)
124123oveq1i 5984 . . . . . 6 ((1 · (2↑4)) / (6 · (2↑4))) = ((2↑4) / (6 · (2↑4)))
12582, 88gt0ap0ii 8743 . . . . . . . . 9 (2↑4) # 0
126122, 125dividapi 8860 . . . . . . . 8 ((2↑4) / (2↑4)) = 1
127126oveq2i 5985 . . . . . . 7 ((1 / 6) · ((2↑4) / (2↑4))) = ((1 / 6) · 1)
128 ax-1cn 8060 . . . . . . . 8 1 ∈ ℂ
12985, 87gt0ap0ii 8743 . . . . . . . 8 6 # 0
130128, 105, 122, 122, 129, 125divmuldivapi 8887 . . . . . . 7 ((1 / 6) · ((2↑4) / (2↑4))) = ((1 · (2↑4)) / (6 · (2↑4)))
13185, 129rerecclapi 8892 . . . . . . . . 9 (1 / 6) ∈ ℝ
132131recni 8126 . . . . . . . 8 (1 / 6) ∈ ℂ
133132mulridi 8116 . . . . . . 7 ((1 / 6) · 1) = (1 / 6)
134127, 130, 1333eqtr3i 2238 . . . . . 6 ((1 · (2↑4)) / (6 · (2↑4))) = (1 / 6)
135124, 134eqtr3i 2232 . . . . 5 ((2↑4) / (6 · (2↑4))) = (1 / 6)
13691, 121, 1353brtr3i 4091 . . . 4 ((4 + 1) / ((!‘4) · 4)) < (1 / 6)
137 rpexpcl 10747 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 4 ∈ ℤ) → (𝐴↑4) ∈ ℝ+)
13838, 69, 137sylancl 413 . . . . 5 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℝ+)
139 elrp 9819 . . . . . 6 ((𝐴↑4) ∈ ℝ+ ↔ ((𝐴↑4) ∈ ℝ ∧ 0 < (𝐴↑4)))
140 ltmul2 8971 . . . . . . 7 ((((4 + 1) / ((!‘4) · 4)) ∈ ℝ ∧ (1 / 6) ∈ ℝ ∧ ((𝐴↑4) ∈ ℝ ∧ 0 < (𝐴↑4))) → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
14124, 131, 140mp3an12 1342 . . . . . 6 (((𝐴↑4) ∈ ℝ ∧ 0 < (𝐴↑4)) → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
142139, 141sylbi 121 . . . . 5 ((𝐴↑4) ∈ ℝ+ → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
143138, 142syl 14 . . . 4 (𝐴 ∈ (0(,]1) → (((4 + 1) / ((!‘4) · 4)) < (1 / 6) ↔ ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6))))
144136, 143mpbii 148 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) · (1 / 6)))
14516recnd 8143 . . . 4 (𝐴 ∈ (0(,]1) → (𝐴↑4) ∈ ℂ)
146 divrecap 8803 . . . . 5 (((𝐴↑4) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 # 0) → ((𝐴↑4) / 6) = ((𝐴↑4) · (1 / 6)))
147105, 129, 146mp3an23 1344 . . . 4 ((𝐴↑4) ∈ ℂ → ((𝐴↑4) / 6) = ((𝐴↑4) · (1 / 6)))
148145, 147syl 14 . . 3 (𝐴 ∈ (0(,]1) → ((𝐴↑4) / 6) = ((𝐴↑4) · (1 / 6)))
149144, 148breqtrrd 4090 . 2 (𝐴 ∈ (0(,]1) → ((𝐴↑4) · ((4 + 1) / ((!‘4) · 4))) < ((𝐴↑4) / 6))
15014, 26, 29, 52, 149lelttrd 8239 1 (𝐴 ∈ (0(,]1) → (abs‘Σ𝑘 ∈ (ℤ‘4)(𝐹𝑘)) < ((𝐴↑4) / 6))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  cmpt 4124  cfv 5294  (class class class)co 5974  cc 7965  cr 7966  0cc0 7967  1c1 7968  ici 7969   + caddc 7970   · cmul 7972  *cxr 8148   < clt 8149  cle 8150   # cap 8696   / cdiv 8787  cn 9078  2c2 9129  3c3 9130  4c4 9131  5c5 9132  6c6 9133  8c8 9135  0cn0 9337  cz 9414  cuz 9690  +crp 9817  (,]cioc 10053  cexp 10727  !cfa 10914  abscabs 11474  Σcsu 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-ioc 10057  df-ico 10058  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-ihash 10965  df-shft 11292  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831
This theorem is referenced by:  sin01bnd  12234  cos01bnd  12235
  Copyright terms: Public domain W3C validator