![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addid2i | GIF version |
Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid2i | ⊢ (0 + 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addlid 8144 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 (class class class)co 5906 ℂcc 7856 0cc0 7858 + caddc 7861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2171 ax-1cn 7951 ax-icn 7953 ax-addcl 7954 ax-mulcl 7956 ax-addcom 7958 ax-i2m1 7963 ax-0id 7966 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 df-clel 2185 |
This theorem is referenced by: ine0 8399 inelr 8589 muleqadd 8673 0p1e1 9082 iap0 9191 num0h 9445 nummul1c 9482 decrmac 9491 decmul1 9497 fz0tp 10174 fz0to4untppr 10176 fzo0to3tp 10272 rei 11017 imi 11018 resqrexlemover 11128 ef01bndlem 11873 efhalfpi 14862 sinq34lt0t 14894 ex-fac 15144 |
Copyright terms: Public domain | W3C validator |