Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2i | GIF version |
Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
addid2i | ⊢ (0 + 𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | addid2 8037 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 0cc0 7753 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-i2m1 7858 ax-0id 7861 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: ine0 8292 inelr 8482 muleqadd 8565 0p1e1 8971 iap0 9080 num0h 9333 nummul1c 9370 decrmac 9379 decmul1 9385 fz0tp 10057 fz0to4untppr 10059 fzo0to3tp 10154 rei 10841 imi 10842 resqrexlemover 10952 ef01bndlem 11697 efhalfpi 13360 sinq34lt0t 13392 ex-fac 13609 |
Copyright terms: Public domain | W3C validator |