ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3m1e2 GIF version

Theorem 3m1e2 8750
Description: 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.)
Assertion
Ref Expression
3m1e2 (3 − 1) = 2

Proof of Theorem 3m1e2
StepHypRef Expression
1 3cn 8705 . 2 3 ∈ ℂ
2 ax-1cn 7638 . 2 1 ∈ ℂ
3 2cn 8701 . 2 2 ∈ ℂ
42, 3addcomi 7829 . . 3 (1 + 2) = (2 + 1)
5 df-3 8690 . . 3 3 = (2 + 1)
64, 5eqtr4i 2138 . 2 (1 + 2) = 3
71, 2, 3, 6subaddrii 7974 1 (3 − 1) = 2
Colors of variables: wff set class
Syntax hints:   = wceq 1314  (class class class)co 5728  1c1 7548   + caddc 7550  cmin 7856  2c2 8681  3c3 8682
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-sub 7858  df-2 8689  df-3 8690
This theorem is referenced by:  halfpm6th  8844  ige3m2fz  9722  fzo0to3tp  9889  fldiv4p1lem1div2  9971  n2dvds3  11460  3prm  11655  ex-bc  12634
  Copyright terms: Public domain W3C validator