ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decrmanc GIF version

Theorem decrmanc 9250
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a 𝐴 ∈ ℕ0
decrmanc.b 𝐵 ∈ ℕ0
decrmanc.n 𝑁 ∈ ℕ0
decrmanc.m 𝑀 = 𝐴𝐵
decrmanc.p 𝑃 ∈ ℕ0
decrmanc.e (𝐴 · 𝑃) = 𝐸
decrmanc.f ((𝐵 · 𝑃) + 𝑁) = 𝐹
Assertion
Ref Expression
decrmanc ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decrmanc
StepHypRef Expression
1 decrmanc.a . 2 𝐴 ∈ ℕ0
2 decrmanc.b . 2 𝐵 ∈ ℕ0
3 0nn0 9004 . 2 0 ∈ ℕ0
4 decrmanc.n . 2 𝑁 ∈ ℕ0
5 decrmanc.m . 2 𝑀 = 𝐴𝐵
64dec0h 9215 . 2 𝑁 = 0𝑁
7 decrmanc.p . 2 𝑃 ∈ ℕ0
81, 7nn0mulcli 9027 . . . . 5 (𝐴 · 𝑃) ∈ ℕ0
98nn0cni 9001 . . . 4 (𝐴 · 𝑃) ∈ ℂ
109addid1i 7916 . . 3 ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃)
11 decrmanc.e . . 3 (𝐴 · 𝑃) = 𝐸
1210, 11eqtri 2160 . 2 ((𝐴 · 𝑃) + 0) = 𝐸
13 decrmanc.f . 2 ((𝐵 · 𝑃) + 𝑁) = 𝐹
141, 2, 3, 4, 5, 6, 7, 12, 13decma 9244 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff set class
Syntax hints:   = wceq 1331  wcel 1480  (class class class)co 5774  0cc0 7632   + caddc 7635   · cmul 7637  0cn0 8989  cdc 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7947  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-5 8794  df-6 8795  df-7 8796  df-8 8797  df-9 8798  df-n0 8990  df-dec 9195
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator