| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decrmanc | GIF version | ||
| Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
| decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
| decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
| decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
| decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
| decrmanc.e | ⊢ (𝐴 · 𝑃) = 𝐸 |
| decrmanc.f | ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 |
| Ref | Expression |
|---|---|
| decrmanc | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 9352 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 9567 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
| 8 | 1, 7 | nn0mulcli 9375 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
| 9 | 8 | nn0cni 9349 | . . . 4 ⊢ (𝐴 · 𝑃) ∈ ℂ |
| 10 | 9 | addridi 8256 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
| 11 | decrmanc.e | . . 3 ⊢ (𝐴 · 𝑃) = 𝐸 | |
| 12 | 10, 11 | eqtri 2230 | . 2 ⊢ ((𝐴 · 𝑃) + 0) = 𝐸 |
| 13 | decrmanc.f | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 12, 13 | decma 9596 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 0cc0 7967 + caddc 7970 · cmul 7972 ℕ0cn0 9337 ;cdc 9546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |