| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decrmanc | GIF version | ||
| Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
| decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
| decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
| decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
| decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
| decrmanc.e | ⊢ (𝐴 · 𝑃) = 𝐸 |
| decrmanc.f | ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 |
| Ref | Expression |
|---|---|
| decrmanc | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 9392 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 9607 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
| 8 | 1, 7 | nn0mulcli 9415 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
| 9 | 8 | nn0cni 9389 | . . . 4 ⊢ (𝐴 · 𝑃) ∈ ℂ |
| 10 | 9 | addridi 8296 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
| 11 | decrmanc.e | . . 3 ⊢ (𝐴 · 𝑃) = 𝐸 | |
| 12 | 10, 11 | eqtri 2250 | . 2 ⊢ ((𝐴 · 𝑃) + 0) = 𝐸 |
| 13 | decrmanc.f | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 12, 13 | decma 9636 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 0cc0 8007 + caddc 8010 · cmul 8012 ℕ0cn0 9377 ;cdc 9586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |