ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decrmanc GIF version

Theorem decrmanc 9413
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.)
Hypotheses
Ref Expression
decrmanc.a 𝐴 ∈ ℕ0
decrmanc.b 𝐵 ∈ ℕ0
decrmanc.n 𝑁 ∈ ℕ0
decrmanc.m 𝑀 = 𝐴𝐵
decrmanc.p 𝑃 ∈ ℕ0
decrmanc.e (𝐴 · 𝑃) = 𝐸
decrmanc.f ((𝐵 · 𝑃) + 𝑁) = 𝐹
Assertion
Ref Expression
decrmanc ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹

Proof of Theorem decrmanc
StepHypRef Expression
1 decrmanc.a . 2 𝐴 ∈ ℕ0
2 decrmanc.b . 2 𝐵 ∈ ℕ0
3 0nn0 9164 . 2 0 ∈ ℕ0
4 decrmanc.n . 2 𝑁 ∈ ℕ0
5 decrmanc.m . 2 𝑀 = 𝐴𝐵
64dec0h 9378 . 2 𝑁 = 0𝑁
7 decrmanc.p . 2 𝑃 ∈ ℕ0
81, 7nn0mulcli 9187 . . . . 5 (𝐴 · 𝑃) ∈ ℕ0
98nn0cni 9161 . . . 4 (𝐴 · 𝑃) ∈ ℂ
109addid1i 8073 . . 3 ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃)
11 decrmanc.e . . 3 (𝐴 · 𝑃) = 𝐸
1210, 11eqtri 2196 . 2 ((𝐴 · 𝑃) + 0) = 𝐸
13 decrmanc.f . 2 ((𝐵 · 𝑃) + 𝑁) = 𝐹
141, 2, 3, 4, 5, 6, 7, 12, 13decma 9407 1 ((𝑀 · 𝑃) + 𝑁) = 𝐸𝐹
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  (class class class)co 5865  0cc0 7786   + caddc 7789   · cmul 7791  0cn0 9149  cdc 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sub 8104  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-5 8954  df-6 8955  df-7 8956  df-8 8957  df-9 8958  df-n0 9150  df-dec 9358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator