Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decrmanc | GIF version |
Description: Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
Ref | Expression |
---|---|
decrmanc.a | ⊢ 𝐴 ∈ ℕ0 |
decrmanc.b | ⊢ 𝐵 ∈ ℕ0 |
decrmanc.n | ⊢ 𝑁 ∈ ℕ0 |
decrmanc.m | ⊢ 𝑀 = ;𝐴𝐵 |
decrmanc.p | ⊢ 𝑃 ∈ ℕ0 |
decrmanc.e | ⊢ (𝐴 · 𝑃) = 𝐸 |
decrmanc.f | ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 |
Ref | Expression |
---|---|
decrmanc | ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decrmanc.a | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decrmanc.b | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 9129 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decrmanc.n | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decrmanc.m | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 9343 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | decrmanc.p | . 2 ⊢ 𝑃 ∈ ℕ0 | |
8 | 1, 7 | nn0mulcli 9152 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
9 | 8 | nn0cni 9126 | . . . 4 ⊢ (𝐴 · 𝑃) ∈ ℂ |
10 | 9 | addid1i 8040 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
11 | decrmanc.e | . . 3 ⊢ (𝐴 · 𝑃) = 𝐸 | |
12 | 10, 11 | eqtri 2186 | . 2 ⊢ ((𝐴 · 𝑃) + 0) = 𝐸 |
13 | decrmanc.f | . 2 ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 | |
14 | 1, 2, 3, 4, 5, 6, 7, 12, 13 | decma 9372 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 (class class class)co 5842 0cc0 7753 + caddc 7756 · cmul 7758 ℕ0cn0 9114 ;cdc 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-n0 9115 df-dec 9323 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |