ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sinhalfpilem GIF version

Theorem sinhalfpilem 13506
Description: Lemma for sinhalfpi 13511 and coshalfpi 13512. (Contributed by Paul Chapman, 23-Jan-2008.)
Assertion
Ref Expression
sinhalfpilem ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)

Proof of Theorem sinhalfpilem
StepHypRef Expression
1 sq1 10569 . . . 4 (1↑2) = 1
2 pire 13501 . . . . . . . . . . . . . . . . 17 π ∈ ℝ
32recni 7932 . . . . . . . . . . . . . . . 16 π ∈ ℂ
4 2cn 8949 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
5 2ap0 8971 . . . . . . . . . . . . . . . 16 2 # 0
63, 4, 5divcanap2i 8672 . . . . . . . . . . . . . . 15 (2 · (π / 2)) = π
76fveq2i 5499 . . . . . . . . . . . . . 14 (sin‘(2 · (π / 2))) = (sin‘π)
82rehalfcli 9126 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
98recni 7932 . . . . . . . . . . . . . . 15 (π / 2) ∈ ℂ
10 sin2t 11712 . . . . . . . . . . . . . . 15 ((π / 2) ∈ ℂ → (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))))
119, 10ax-mp 5 . . . . . . . . . . . . . 14 (sin‘(2 · (π / 2))) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
127, 11eqtr3i 2193 . . . . . . . . . . . . 13 (sin‘π) = (2 · ((sin‘(π / 2)) · (cos‘(π / 2))))
13 sinpi 13500 . . . . . . . . . . . . 13 (sin‘π) = 0
1412, 13eqtr3i 2193 . . . . . . . . . . . 12 (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0
15 0cn 7912 . . . . . . . . . . . . 13 0 ∈ ℂ
16 sincl 11669 . . . . . . . . . . . . . . 15 ((π / 2) ∈ ℂ → (sin‘(π / 2)) ∈ ℂ)
179, 16ax-mp 5 . . . . . . . . . . . . . 14 (sin‘(π / 2)) ∈ ℂ
18 coscl 11670 . . . . . . . . . . . . . . 15 ((π / 2) ∈ ℂ → (cos‘(π / 2)) ∈ ℂ)
199, 18ax-mp 5 . . . . . . . . . . . . . 14 (cos‘(π / 2)) ∈ ℂ
2017, 19mulcli 7925 . . . . . . . . . . . . 13 ((sin‘(π / 2)) · (cos‘(π / 2))) ∈ ℂ
2115, 4, 20, 5divmulapi 8683 . . . . . . . . . . . 12 ((0 / 2) = ((sin‘(π / 2)) · (cos‘(π / 2))) ↔ (2 · ((sin‘(π / 2)) · (cos‘(π / 2)))) = 0)
2214, 21mpbir 145 . . . . . . . . . . 11 (0 / 2) = ((sin‘(π / 2)) · (cos‘(π / 2)))
234, 5div0api 8663 . . . . . . . . . . 11 (0 / 2) = 0
2422, 23eqtr3i 2193 . . . . . . . . . 10 ((sin‘(π / 2)) · (cos‘(π / 2))) = 0
25 resincl 11683 . . . . . . . . . . . . 13 ((π / 2) ∈ ℝ → (sin‘(π / 2)) ∈ ℝ)
268, 25ax-mp 5 . . . . . . . . . . . 12 (sin‘(π / 2)) ∈ ℝ
27 2re 8948 . . . . . . . . . . . . . . 15 2 ∈ ℝ
28 pipos 13503 . . . . . . . . . . . . . . 15 0 < π
29 2pos 8969 . . . . . . . . . . . . . . 15 0 < 2
302, 27, 28, 29divgt0ii 8835 . . . . . . . . . . . . . 14 0 < (π / 2)
31 4re 8955 . . . . . . . . . . . . . . . 16 4 ∈ ℝ
32 pigt2lt4 13499 . . . . . . . . . . . . . . . . 17 (2 < π ∧ π < 4)
3332simpri 112 . . . . . . . . . . . . . . . 16 π < 4
342, 31, 33ltleii 8022 . . . . . . . . . . . . . . 15 π ≤ 4
3527, 29pm3.2i 270 . . . . . . . . . . . . . . . . 17 (2 ∈ ℝ ∧ 0 < 2)
36 ledivmul 8793 . . . . . . . . . . . . . . . . 17 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) ≤ 2 ↔ π ≤ (2 · 2)))
372, 27, 35, 36mp3an 1332 . . . . . . . . . . . . . . . 16 ((π / 2) ≤ 2 ↔ π ≤ (2 · 2))
38 2t2e4 9032 . . . . . . . . . . . . . . . . 17 (2 · 2) = 4
3938breq2i 3997 . . . . . . . . . . . . . . . 16 (π ≤ (2 · 2) ↔ π ≤ 4)
4037, 39bitr2i 184 . . . . . . . . . . . . . . 15 (π ≤ 4 ↔ (π / 2) ≤ 2)
4134, 40mpbi 144 . . . . . . . . . . . . . 14 (π / 2) ≤ 2
42 0xr 7966 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
43 elioc2 9893 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 2 ∈ ℝ) → ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2)))
4442, 27, 43mp2an 424 . . . . . . . . . . . . . 14 ((π / 2) ∈ (0(,]2) ↔ ((π / 2) ∈ ℝ ∧ 0 < (π / 2) ∧ (π / 2) ≤ 2))
458, 30, 41, 44mpbir3an 1174 . . . . . . . . . . . . 13 (π / 2) ∈ (0(,]2)
46 sin02gt0 11726 . . . . . . . . . . . . 13 ((π / 2) ∈ (0(,]2) → 0 < (sin‘(π / 2)))
4745, 46ax-mp 5 . . . . . . . . . . . 12 0 < (sin‘(π / 2))
4826, 47gt0ap0ii 8547 . . . . . . . . . . 11 (sin‘(π / 2)) # 0
4915, 17, 19, 48divmulapi 8683 . . . . . . . . . 10 ((0 / (sin‘(π / 2))) = (cos‘(π / 2)) ↔ ((sin‘(π / 2)) · (cos‘(π / 2))) = 0)
5024, 49mpbir 145 . . . . . . . . 9 (0 / (sin‘(π / 2))) = (cos‘(π / 2))
5117, 48div0api 8663 . . . . . . . . 9 (0 / (sin‘(π / 2))) = 0
5250, 51eqtr3i 2193 . . . . . . . 8 (cos‘(π / 2)) = 0
5352oveq1i 5863 . . . . . . 7 ((cos‘(π / 2))↑2) = (0↑2)
54 sq0 10566 . . . . . . 7 (0↑2) = 0
5553, 54eqtri 2191 . . . . . 6 ((cos‘(π / 2))↑2) = 0
5655oveq2i 5864 . . . . 5 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = (((sin‘(π / 2))↑2) + 0)
57 sincossq 11711 . . . . . 6 ((π / 2) ∈ ℂ → (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1)
589, 57ax-mp 5 . . . . 5 (((sin‘(π / 2))↑2) + ((cos‘(π / 2))↑2)) = 1
5956, 58eqtr3i 2193 . . . 4 (((sin‘(π / 2))↑2) + 0) = 1
6017sqcli 10556 . . . . 5 ((sin‘(π / 2))↑2) ∈ ℂ
6160addid1i 8061 . . . 4 (((sin‘(π / 2))↑2) + 0) = ((sin‘(π / 2))↑2)
621, 59, 613eqtr2ri 2198 . . 3 ((sin‘(π / 2))↑2) = (1↑2)
63 0re 7920 . . . . 5 0 ∈ ℝ
6463, 26, 47ltleii 8022 . . . 4 0 ≤ (sin‘(π / 2))
65 1re 7919 . . . 4 1 ∈ ℝ
66 0le1 8400 . . . 4 0 ≤ 1
67 sq11 10548 . . . 4 ((((sin‘(π / 2)) ∈ ℝ ∧ 0 ≤ (sin‘(π / 2))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → (((sin‘(π / 2))↑2) = (1↑2) ↔ (sin‘(π / 2)) = 1))
6826, 64, 65, 66, 67mp4an 425 . . 3 (((sin‘(π / 2))↑2) = (1↑2) ↔ (sin‘(π / 2)) = 1)
6962, 68mpbi 144 . 2 (sin‘(π / 2)) = 1
7069, 52pm3.2i 270 1 ((sin‘(π / 2)) = 1 ∧ (cos‘(π / 2)) = 0)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141   class class class wbr 3989  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  *cxr 7953   < clt 7954  cle 7955   / cdiv 8589  2c2 8929  4c4 8931  (,]cioc 9846  cexp 10475  sincsin 11607  cosccos 11608  πcpi 11610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-7 8942  df-8 8943  df-9 8944  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ioc 9850  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-sin 11613  df-cos 11614  df-pi 11616  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420
This theorem is referenced by:  sinhalfpi  13511  coshalfpi  13512
  Copyright terms: Public domain W3C validator