ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddci GIF version

Theorem decaddci 9571
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1 𝐴 ∈ ℕ0
decaddi.2 𝐵 ∈ ℕ0
decaddi.3 𝑁 ∈ ℕ0
decaddi.4 𝑀 = 𝐴𝐵
decaddci.5 (𝐴 + 1) = 𝐷
decaddci.6 𝐶 ∈ ℕ0
decaddci.7 (𝐵 + 𝑁) = 1𝐶
Assertion
Ref Expression
decaddci (𝑀 + 𝑁) = 𝐷𝐶

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2 𝐴 ∈ ℕ0
2 decaddi.2 . 2 𝐵 ∈ ℕ0
3 0nn0 9317 . 2 0 ∈ ℕ0
4 decaddi.3 . 2 𝑁 ∈ ℕ0
5 decaddi.4 . 2 𝑀 = 𝐴𝐵
64dec0h 9532 . 2 𝑁 = 0𝑁
71nn0cni 9314 . . . . 5 𝐴 ∈ ℂ
87addridi 8221 . . . 4 (𝐴 + 0) = 𝐴
98oveq1i 5961 . . 3 ((𝐴 + 0) + 1) = (𝐴 + 1)
10 decaddci.5 . . 3 (𝐴 + 1) = 𝐷
119, 10eqtri 2227 . 2 ((𝐴 + 0) + 1) = 𝐷
12 decaddci.6 . 2 𝐶 ∈ ℕ0
13 decaddci.7 . 2 (𝐵 + 𝑁) = 1𝐶
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 9565 1 (𝑀 + 𝑁) = 𝐷𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5951  0cc0 7932  1c1 7933   + caddc 7935  0cn0 9302  cdc 9511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sub 8252  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-dec 9512
This theorem is referenced by:  decaddci2  9572  6t4e24  9616  7t3e21  9620  7t5e35  9622  7t6e42  9623  8t3e24  9626  8t4e32  9627  8t7e56  9630  8t8e64  9631  9t3e27  9633  9t4e36  9634  9t5e45  9635  9t6e54  9636  9t7e63  9637  9t8e72  9638  9t9e81  9639  2exp8  12802  2exp11  12803  ex-exp  15737
  Copyright terms: Public domain W3C validator