ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddci GIF version

Theorem decaddci 9646
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1 𝐴 ∈ ℕ0
decaddi.2 𝐵 ∈ ℕ0
decaddi.3 𝑁 ∈ ℕ0
decaddi.4 𝑀 = 𝐴𝐵
decaddci.5 (𝐴 + 1) = 𝐷
decaddci.6 𝐶 ∈ ℕ0
decaddci.7 (𝐵 + 𝑁) = 1𝐶
Assertion
Ref Expression
decaddci (𝑀 + 𝑁) = 𝐷𝐶

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2 𝐴 ∈ ℕ0
2 decaddi.2 . 2 𝐵 ∈ ℕ0
3 0nn0 9392 . 2 0 ∈ ℕ0
4 decaddi.3 . 2 𝑁 ∈ ℕ0
5 decaddi.4 . 2 𝑀 = 𝐴𝐵
64dec0h 9607 . 2 𝑁 = 0𝑁
71nn0cni 9389 . . . . 5 𝐴 ∈ ℂ
87addridi 8296 . . . 4 (𝐴 + 0) = 𝐴
98oveq1i 6017 . . 3 ((𝐴 + 0) + 1) = (𝐴 + 1)
10 decaddci.5 . . 3 (𝐴 + 1) = 𝐷
119, 10eqtri 2250 . 2 ((𝐴 + 0) + 1) = 𝐷
12 decaddci.6 . 2 𝐶 ∈ ℕ0
13 decaddci.7 . 2 (𝐵 + 𝑁) = 1𝐶
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 9640 1 (𝑀 + 𝑁) = 𝐷𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 6007  0cc0 8007  1c1 8008   + caddc 8010  0cn0 9377  cdc 9586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sub 8327  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-dec 9587
This theorem is referenced by:  decaddci2  9647  6t4e24  9691  7t3e21  9695  7t5e35  9697  7t6e42  9698  8t3e24  9701  8t4e32  9702  8t7e56  9705  8t8e64  9706  9t3e27  9708  9t4e36  9709  9t5e45  9710  9t6e54  9711  9t7e63  9712  9t8e72  9713  9t9e81  9714  2exp8  12966  2exp11  12967  ex-exp  16115
  Copyright terms: Public domain W3C validator