![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decaddci | GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
Ref | Expression |
---|---|
decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 9258 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 9472 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | 1 | nn0cni 9255 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
8 | 7 | addid1i 8163 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
9 | 8 | oveq1i 5929 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
11 | 9, 10 | eqtri 2214 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 9505 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 ℕ0cn0 9243 ;cdc 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-dec 9452 |
This theorem is referenced by: decaddci2 9512 6t4e24 9556 7t3e21 9560 7t5e35 9562 7t6e42 9563 8t3e24 9566 8t4e32 9567 8t7e56 9570 8t8e64 9571 9t3e27 9573 9t4e36 9574 9t5e45 9575 9t6e54 9576 9t7e63 9577 9t8e72 9578 9t9e81 9579 ex-exp 15289 |
Copyright terms: Public domain | W3C validator |