| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decaddci | GIF version | ||
| Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
| decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
| Ref | Expression |
|---|---|
| decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 9392 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 9607 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | 1 | nn0cni 9389 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 8 | 7 | addridi 8296 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
| 9 | 8 | oveq1i 6017 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
| 10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
| 11 | 9, 10 | eqtri 2250 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
| 12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
| 13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
| 14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 9640 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 ℕ0cn0 9377 ;cdc 9586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-dec 9587 |
| This theorem is referenced by: decaddci2 9647 6t4e24 9691 7t3e21 9695 7t5e35 9697 7t6e42 9698 8t3e24 9701 8t4e32 9702 8t7e56 9705 8t8e64 9706 9t3e27 9708 9t4e36 9709 9t5e45 9710 9t6e54 9711 9t7e63 9712 9t8e72 9713 9t9e81 9714 2exp8 12966 2exp11 12967 ex-exp 16115 |
| Copyright terms: Public domain | W3C validator |