ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decaddci GIF version

Theorem decaddci 9536
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1 𝐴 ∈ ℕ0
decaddi.2 𝐵 ∈ ℕ0
decaddi.3 𝑁 ∈ ℕ0
decaddi.4 𝑀 = 𝐴𝐵
decaddci.5 (𝐴 + 1) = 𝐷
decaddci.6 𝐶 ∈ ℕ0
decaddci.7 (𝐵 + 𝑁) = 1𝐶
Assertion
Ref Expression
decaddci (𝑀 + 𝑁) = 𝐷𝐶

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2 𝐴 ∈ ℕ0
2 decaddi.2 . 2 𝐵 ∈ ℕ0
3 0nn0 9283 . 2 0 ∈ ℕ0
4 decaddi.3 . 2 𝑁 ∈ ℕ0
5 decaddi.4 . 2 𝑀 = 𝐴𝐵
64dec0h 9497 . 2 𝑁 = 0𝑁
71nn0cni 9280 . . . . 5 𝐴 ∈ ℂ
87addridi 8187 . . . 4 (𝐴 + 0) = 𝐴
98oveq1i 5935 . . 3 ((𝐴 + 0) + 1) = (𝐴 + 1)
10 decaddci.5 . . 3 (𝐴 + 1) = 𝐷
119, 10eqtri 2217 . 2 ((𝐴 + 0) + 1) = 𝐷
12 decaddci.6 . 2 𝐶 ∈ ℕ0
13 decaddci.7 . 2 (𝐵 + 𝑁) = 1𝐶
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 9530 1 (𝑀 + 𝑁) = 𝐷𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5925  0cc0 7898  1c1 7899   + caddc 7901  0cn0 9268  cdc 9476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8218  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-dec 9477
This theorem is referenced by:  decaddci2  9537  6t4e24  9581  7t3e21  9585  7t5e35  9587  7t6e42  9588  8t3e24  9591  8t4e32  9592  8t7e56  9595  8t8e64  9596  9t3e27  9598  9t4e36  9599  9t5e45  9600  9t6e54  9601  9t7e63  9602  9t8e72  9603  9t9e81  9604  2exp8  12631  2exp11  12632  ex-exp  15459
  Copyright terms: Public domain W3C validator