| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decaddci | GIF version | ||
| Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
| decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
| Ref | Expression |
|---|---|
| decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 9352 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 9567 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | 1 | nn0cni 9349 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 8 | 7 | addridi 8256 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
| 9 | 8 | oveq1i 5984 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
| 10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
| 11 | 9, 10 | eqtri 2230 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
| 12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
| 13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
| 14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 9600 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 0cc0 7967 1c1 7968 + caddc 7970 ℕ0cn0 9337 ;cdc 9546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 |
| This theorem is referenced by: decaddci2 9607 6t4e24 9651 7t3e21 9655 7t5e35 9657 7t6e42 9658 8t3e24 9661 8t4e32 9662 8t7e56 9665 8t8e64 9666 9t3e27 9668 9t4e36 9669 9t5e45 9670 9t6e54 9671 9t7e63 9672 9t8e72 9673 9t9e81 9674 2exp8 12924 2exp11 12925 ex-exp 16001 |
| Copyright terms: Public domain | W3C validator |