Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decaddci | GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
Ref | Expression |
---|---|
decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 9084 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 9295 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | 1 | nn0cni 9081 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
8 | 7 | addid1i 7996 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
9 | 8 | oveq1i 5824 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
11 | 9, 10 | eqtri 2175 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 9328 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1332 ∈ wcel 2125 (class class class)co 5814 0cc0 7711 1c1 7712 + caddc 7714 ℕ0cn0 9069 ;cdc 9274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-sub 8027 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-5 8874 df-6 8875 df-7 8876 df-8 8877 df-9 8878 df-n0 9070 df-dec 9275 |
This theorem is referenced by: decaddci2 9335 6t4e24 9379 7t3e21 9383 7t5e35 9385 7t6e42 9386 8t3e24 9389 8t4e32 9390 8t7e56 9393 8t8e64 9394 9t3e27 9396 9t4e36 9397 9t5e45 9398 9t6e54 9399 9t7e63 9400 9t8e72 9401 9t9e81 9402 ex-exp 13249 |
Copyright terms: Public domain | W3C validator |