ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  num0u GIF version

Theorem num0u 9596
Description: Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numnncl.1 𝑇 ∈ ℕ0
numnncl.2 𝐴 ∈ ℕ0
Assertion
Ref Expression
num0u (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0)

Proof of Theorem num0u
StepHypRef Expression
1 numnncl.1 . . . . 5 𝑇 ∈ ℕ0
2 numnncl.2 . . . . 5 𝐴 ∈ ℕ0
31, 2nn0mulcli 9415 . . . 4 (𝑇 · 𝐴) ∈ ℕ0
43nn0cni 9389 . . 3 (𝑇 · 𝐴) ∈ ℂ
54addridi 8296 . 2 ((𝑇 · 𝐴) + 0) = (𝑇 · 𝐴)
65eqcomi 2233 1 (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0)
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 6007  0cc0 8007   + caddc 8010   · cmul 8012  0cn0 9377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-sub 8327  df-inn 9119  df-n0 9378
This theorem is referenced by:  dec0u  9606  numsucc  9625  nummul1c  9634
  Copyright terms: Public domain W3C validator