ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmulnc GIF version

Theorem decmulnc 9199
Description: The product of a numeral with a number (no carry). (Contributed by AV, 15-Jun-2021.)
Hypotheses
Ref Expression
decmulnc.n 𝑁 ∈ ℕ0
decmulnc.a 𝐴 ∈ ℕ0
decmulnc.b 𝐵 ∈ ℕ0
Assertion
Ref Expression
decmulnc (𝑁 · 𝐴𝐵) = (𝑁 · 𝐴)(𝑁 · 𝐵)

Proof of Theorem decmulnc
StepHypRef Expression
1 decmulnc.n . 2 𝑁 ∈ ℕ0
2 decmulnc.a . 2 𝐴 ∈ ℕ0
3 decmulnc.b . 2 𝐵 ∈ ℕ0
4 eqid 2115 . 2 𝐴𝐵 = 𝐴𝐵
51, 3nn0mulcli 8966 . 2 (𝑁 · 𝐵) ∈ ℕ0
6 0nn0 8943 . 2 0 ∈ ℕ0
71, 2nn0mulcli 8966 . . . 4 (𝑁 · 𝐴) ∈ ℕ0
87nn0cni 8940 . . 3 (𝑁 · 𝐴) ∈ ℂ
98addid1i 7868 . 2 ((𝑁 · 𝐴) + 0) = (𝑁 · 𝐴)
105dec0h 9154 . 2 (𝑁 · 𝐵) = 0(𝑁 · 𝐵)
111, 2, 3, 4, 5, 6, 9, 10decmul2c 9198 1 (𝑁 · 𝐴𝐵) = (𝑁 · 𝐴)(𝑁 · 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1314  wcel 1463  (class class class)co 5740  0cc0 7584   · cmul 7589  0cn0 8928  cdc 9133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-sub 7899  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-5 8739  df-6 8740  df-7 8741  df-8 8742  df-9 8743  df-n0 8929  df-dec 9134
This theorem is referenced by:  11multnc  9200
  Copyright terms: Public domain W3C validator