| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decmul1 | GIF version | ||
| Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
| decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
| decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
| decmul1.c | ⊢ (𝐴 · 𝑃) = 𝐶 |
| decmul1.d | ⊢ (𝐵 · 𝑃) = 𝐷 |
| Ref | Expression |
|---|---|
| decmul1 | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9528 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 6 | dfdec10 9514 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 7 | 5, 6 | eqtri 2227 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
| 8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 9 | 0nn0 9317 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 10 | 3, 2 | nn0mulcli 9340 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
| 11 | 10 | nn0cni 9314 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℂ |
| 12 | 11 | addridi 8221 | . . . 4 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
| 13 | decmul1.c | . . . 4 ⊢ (𝐴 · 𝑃) = 𝐶 | |
| 14 | 12, 13 | eqtri 2227 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = 𝐶 |
| 15 | decmul1.d | . . . . 5 ⊢ (𝐵 · 𝑃) = 𝐷 | |
| 16 | 15 | oveq2i 5962 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (0 + 𝐷) |
| 17 | 4, 2 | nn0mulcli 9340 | . . . . . 6 ⊢ (𝐵 · 𝑃) ∈ ℕ0 |
| 18 | 17 | nn0cni 9314 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
| 19 | 18 | addlidi 8222 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (𝐵 · 𝑃) |
| 20 | 1 | nn0cni 9314 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
| 21 | 20 | mul01i 8470 | . . . . . 6 ⊢ (;10 · 0) = 0 |
| 22 | 21 | eqcomi 2210 | . . . . 5 ⊢ 0 = (;10 · 0) |
| 23 | 22 | oveq1i 5961 | . . . 4 ⊢ (0 + 𝐷) = ((;10 · 0) + 𝐷) |
| 24 | 16, 19, 23 | 3eqtr3i 2235 | . . 3 ⊢ (𝐵 · 𝑃) = ((;10 · 0) + 𝐷) |
| 25 | 1, 2, 3, 4, 7, 8, 9, 14, 24 | nummul1c 9559 | . 2 ⊢ (𝑁 · 𝑃) = ((;10 · 𝐶) + 𝐷) |
| 26 | dfdec10 9514 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 27 | 25, 26 | eqtr4i 2230 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5951 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 ℕ0cn0 9302 ;cdc 9511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-sub 8252 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-n0 9303 df-dec 9512 |
| This theorem is referenced by: sq10 10864 2exp7 12801 |
| Copyright terms: Public domain | W3C validator |