![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decmul1 | GIF version |
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
decmul1.c | ⊢ (𝐴 · 𝑃) = 𝐶 |
decmul1.d | ⊢ (𝐵 · 𝑃) = 𝐷 |
Ref | Expression |
---|---|
decmul1 | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 9465 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
6 | dfdec10 9451 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
7 | 5, 6 | eqtri 2214 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
9 | 0nn0 9255 | . . 3 ⊢ 0 ∈ ℕ0 | |
10 | 3, 2 | nn0mulcli 9278 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
11 | 10 | nn0cni 9252 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℂ |
12 | 11 | addid1i 8161 | . . . 4 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
13 | decmul1.c | . . . 4 ⊢ (𝐴 · 𝑃) = 𝐶 | |
14 | 12, 13 | eqtri 2214 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = 𝐶 |
15 | decmul1.d | . . . . 5 ⊢ (𝐵 · 𝑃) = 𝐷 | |
16 | 15 | oveq2i 5929 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (0 + 𝐷) |
17 | 4, 2 | nn0mulcli 9278 | . . . . . 6 ⊢ (𝐵 · 𝑃) ∈ ℕ0 |
18 | 17 | nn0cni 9252 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
19 | 18 | addid2i 8162 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (𝐵 · 𝑃) |
20 | 1 | nn0cni 9252 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
21 | 20 | mul01i 8410 | . . . . . 6 ⊢ (;10 · 0) = 0 |
22 | 21 | eqcomi 2197 | . . . . 5 ⊢ 0 = (;10 · 0) |
23 | 22 | oveq1i 5928 | . . . 4 ⊢ (0 + 𝐷) = ((;10 · 0) + 𝐷) |
24 | 16, 19, 23 | 3eqtr3i 2222 | . . 3 ⊢ (𝐵 · 𝑃) = ((;10 · 0) + 𝐷) |
25 | 1, 2, 3, 4, 7, 8, 9, 14, 24 | nummul1c 9496 | . 2 ⊢ (𝑁 · 𝑃) = ((;10 · 𝐶) + 𝐷) |
26 | dfdec10 9451 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
27 | 25, 26 | eqtr4i 2217 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 (class class class)co 5918 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 ℕ0cn0 9240 ;cdc 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-dec 9449 |
This theorem is referenced by: sq10 10783 |
Copyright terms: Public domain | W3C validator |