| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decmul1 | GIF version | ||
| Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
| decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
| decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
| decmul1.c | ⊢ (𝐴 · 𝑃) = 𝐶 |
| decmul1.d | ⊢ (𝐵 · 𝑃) = 𝐷 |
| Ref | Expression |
|---|---|
| decmul1 | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 9583 | . . 3 ⊢ ;10 ∈ ℕ0 | |
| 2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
| 3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
| 6 | dfdec10 9569 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 7 | 5, 6 | eqtri 2250 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
| 8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 9 | 0nn0 9372 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 10 | 3, 2 | nn0mulcli 9395 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
| 11 | 10 | nn0cni 9369 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℂ |
| 12 | 11 | addridi 8276 | . . . 4 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
| 13 | decmul1.c | . . . 4 ⊢ (𝐴 · 𝑃) = 𝐶 | |
| 14 | 12, 13 | eqtri 2250 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = 𝐶 |
| 15 | decmul1.d | . . . . 5 ⊢ (𝐵 · 𝑃) = 𝐷 | |
| 16 | 15 | oveq2i 6005 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (0 + 𝐷) |
| 17 | 4, 2 | nn0mulcli 9395 | . . . . . 6 ⊢ (𝐵 · 𝑃) ∈ ℕ0 |
| 18 | 17 | nn0cni 9369 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
| 19 | 18 | addlidi 8277 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (𝐵 · 𝑃) |
| 20 | 1 | nn0cni 9369 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
| 21 | 20 | mul01i 8525 | . . . . . 6 ⊢ (;10 · 0) = 0 |
| 22 | 21 | eqcomi 2233 | . . . . 5 ⊢ 0 = (;10 · 0) |
| 23 | 22 | oveq1i 6004 | . . . 4 ⊢ (0 + 𝐷) = ((;10 · 0) + 𝐷) |
| 24 | 16, 19, 23 | 3eqtr3i 2258 | . . 3 ⊢ (𝐵 · 𝑃) = ((;10 · 0) + 𝐷) |
| 25 | 1, 2, 3, 4, 7, 8, 9, 14, 24 | nummul1c 9614 | . 2 ⊢ (𝑁 · 𝑃) = ((;10 · 𝐶) + 𝐷) |
| 26 | dfdec10 9569 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
| 27 | 25, 26 | eqtr4i 2253 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 5994 0cc0 7987 1c1 7988 + caddc 7990 · cmul 7992 ℕ0cn0 9357 ;cdc 9566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-iota 5274 df-fun 5316 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-sub 8307 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-dec 9567 |
| This theorem is referenced by: sq10 10921 2exp7 12943 |
| Copyright terms: Public domain | W3C validator |