ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmul1 GIF version

Theorem decmul1 8909
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul1.p 𝑃 ∈ ℕ0
decmul1.a 𝐴 ∈ ℕ0
decmul1.b 𝐵 ∈ ℕ0
decmul1.n 𝑁 = 𝐴𝐵
decmul1.0 𝐷 ∈ ℕ0
decmul1.c (𝐴 · 𝑃) = 𝐶
decmul1.d (𝐵 · 𝑃) = 𝐷
Assertion
Ref Expression
decmul1 (𝑁 · 𝑃) = 𝐶𝐷

Proof of Theorem decmul1
StepHypRef Expression
1 10nn0 8863 . . 3 10 ∈ ℕ0
2 decmul1.p . . 3 𝑃 ∈ ℕ0
3 decmul1.a . . 3 𝐴 ∈ ℕ0
4 decmul1.b . . 3 𝐵 ∈ ℕ0
5 decmul1.n . . . 4 𝑁 = 𝐴𝐵
6 dfdec10 8849 . . . 4 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
75, 6eqtri 2108 . . 3 𝑁 = ((10 · 𝐴) + 𝐵)
8 decmul1.0 . . 3 𝐷 ∈ ℕ0
9 0nn0 8658 . . 3 0 ∈ ℕ0
103, 2nn0mulcli 8681 . . . . . 6 (𝐴 · 𝑃) ∈ ℕ0
1110nn0cni 8655 . . . . 5 (𝐴 · 𝑃) ∈ ℂ
1211addid1i 7603 . . . 4 ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃)
13 decmul1.c . . . 4 (𝐴 · 𝑃) = 𝐶
1412, 13eqtri 2108 . . 3 ((𝐴 · 𝑃) + 0) = 𝐶
15 decmul1.d . . . . 5 (𝐵 · 𝑃) = 𝐷
1615oveq2i 5645 . . . 4 (0 + (𝐵 · 𝑃)) = (0 + 𝐷)
174, 2nn0mulcli 8681 . . . . . 6 (𝐵 · 𝑃) ∈ ℕ0
1817nn0cni 8655 . . . . 5 (𝐵 · 𝑃) ∈ ℂ
1918addid2i 7604 . . . 4 (0 + (𝐵 · 𝑃)) = (𝐵 · 𝑃)
201nn0cni 8655 . . . . . . 7 10 ∈ ℂ
2120mul01i 7848 . . . . . 6 (10 · 0) = 0
2221eqcomi 2092 . . . . 5 0 = (10 · 0)
2322oveq1i 5644 . . . 4 (0 + 𝐷) = ((10 · 0) + 𝐷)
2416, 19, 233eqtr3i 2116 . . 3 (𝐵 · 𝑃) = ((10 · 0) + 𝐷)
251, 2, 3, 4, 7, 8, 9, 14, 24nummul1c 8894 . 2 (𝑁 · 𝑃) = ((10 · 𝐶) + 𝐷)
26 dfdec10 8849 . 2 𝐶𝐷 = ((10 · 𝐶) + 𝐷)
2725, 26eqtr4i 2111 1 (𝑁 · 𝑃) = 𝐶𝐷
Colors of variables: wff set class
Syntax hints:   = wceq 1289  wcel 1438  (class class class)co 5634  0cc0 7329  1c1 7330   + caddc 7332   · cmul 7334  0cn0 8643  cdc 8846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-sub 7634  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-5 8455  df-6 8456  df-7 8457  df-8 8458  df-9 8459  df-n0 8644  df-dec 8847
This theorem is referenced by:  sq10  10086
  Copyright terms: Public domain W3C validator