Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decmul1 | GIF version |
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decmul1.p | ⊢ 𝑃 ∈ ℕ0 |
decmul1.a | ⊢ 𝐴 ∈ ℕ0 |
decmul1.b | ⊢ 𝐵 ∈ ℕ0 |
decmul1.n | ⊢ 𝑁 = ;𝐴𝐵 |
decmul1.0 | ⊢ 𝐷 ∈ ℕ0 |
decmul1.c | ⊢ (𝐴 · 𝑃) = 𝐶 |
decmul1.d | ⊢ (𝐵 · 𝑃) = 𝐷 |
Ref | Expression |
---|---|
decmul1 | ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 9374 | . . 3 ⊢ ;10 ∈ ℕ0 | |
2 | decmul1.p | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
3 | decmul1.a | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
4 | decmul1.b | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | decmul1.n | . . . 4 ⊢ 𝑁 = ;𝐴𝐵 | |
6 | dfdec10 9360 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
7 | 5, 6 | eqtri 2196 | . . 3 ⊢ 𝑁 = ((;10 · 𝐴) + 𝐵) |
8 | decmul1.0 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
9 | 0nn0 9164 | . . 3 ⊢ 0 ∈ ℕ0 | |
10 | 3, 2 | nn0mulcli 9187 | . . . . . 6 ⊢ (𝐴 · 𝑃) ∈ ℕ0 |
11 | 10 | nn0cni 9161 | . . . . 5 ⊢ (𝐴 · 𝑃) ∈ ℂ |
12 | 11 | addid1i 8073 | . . . 4 ⊢ ((𝐴 · 𝑃) + 0) = (𝐴 · 𝑃) |
13 | decmul1.c | . . . 4 ⊢ (𝐴 · 𝑃) = 𝐶 | |
14 | 12, 13 | eqtri 2196 | . . 3 ⊢ ((𝐴 · 𝑃) + 0) = 𝐶 |
15 | decmul1.d | . . . . 5 ⊢ (𝐵 · 𝑃) = 𝐷 | |
16 | 15 | oveq2i 5876 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (0 + 𝐷) |
17 | 4, 2 | nn0mulcli 9187 | . . . . . 6 ⊢ (𝐵 · 𝑃) ∈ ℕ0 |
18 | 17 | nn0cni 9161 | . . . . 5 ⊢ (𝐵 · 𝑃) ∈ ℂ |
19 | 18 | addid2i 8074 | . . . 4 ⊢ (0 + (𝐵 · 𝑃)) = (𝐵 · 𝑃) |
20 | 1 | nn0cni 9161 | . . . . . . 7 ⊢ ;10 ∈ ℂ |
21 | 20 | mul01i 8322 | . . . . . 6 ⊢ (;10 · 0) = 0 |
22 | 21 | eqcomi 2179 | . . . . 5 ⊢ 0 = (;10 · 0) |
23 | 22 | oveq1i 5875 | . . . 4 ⊢ (0 + 𝐷) = ((;10 · 0) + 𝐷) |
24 | 16, 19, 23 | 3eqtr3i 2204 | . . 3 ⊢ (𝐵 · 𝑃) = ((;10 · 0) + 𝐷) |
25 | 1, 2, 3, 4, 7, 8, 9, 14, 24 | nummul1c 9405 | . 2 ⊢ (𝑁 · 𝑃) = ((;10 · 𝐶) + 𝐷) |
26 | dfdec10 9360 | . 2 ⊢ ;𝐶𝐷 = ((;10 · 𝐶) + 𝐷) | |
27 | 25, 26 | eqtr4i 2199 | 1 ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 (class class class)co 5865 0cc0 7786 1c1 7787 + caddc 7789 · cmul 7791 ℕ0cn0 9149 ;cdc 9357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-n0 9150 df-dec 9358 |
This theorem is referenced by: sq10 10660 |
Copyright terms: Public domain | W3C validator |