| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numnncl2 | GIF version | ||
| Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| numnncl2.1 | ⊢ 𝑇 ∈ ℕ |
| numnncl2.2 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| numnncl2 | ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numnncl2.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
| 2 | numnncl2.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 9100 | . . . 4 ⊢ (𝑇 · 𝐴) ∈ ℕ |
| 4 | 3 | nncni 9088 | . . 3 ⊢ (𝑇 · 𝐴) ∈ ℂ |
| 5 | 4 | addridi 8256 | . 2 ⊢ ((𝑇 · 𝐴) + 0) = (𝑇 · 𝐴) |
| 6 | 5, 3 | eqeltri 2282 | 1 ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 (class class class)co 5974 0cc0 7967 + caddc 7970 · cmul 7972 ℕcn 9078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-sep 4181 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-1rid 8074 ax-0id 8075 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-inn 9079 |
| This theorem is referenced by: decnncl2 9569 |
| Copyright terms: Public domain | W3C validator |