| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > numnncl2 | GIF version | ||
| Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| numnncl2.1 | ⊢ 𝑇 ∈ ℕ |
| numnncl2.2 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| numnncl2 | ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numnncl2.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ | |
| 2 | numnncl2.2 | . . . . 5 ⊢ 𝐴 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 9029 | . . . 4 ⊢ (𝑇 · 𝐴) ∈ ℕ |
| 4 | 3 | nncni 9017 | . . 3 ⊢ (𝑇 · 𝐴) ∈ ℂ |
| 5 | 4 | addridi 8185 | . 2 ⊢ ((𝑇 · 𝐴) + 0) = (𝑇 · 𝐴) |
| 6 | 5, 3 | eqeltri 2269 | 1 ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 (class class class)co 5925 0cc0 7896 + caddc 7899 · cmul 7901 ℕcn 9007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-0id 8004 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 |
| This theorem is referenced by: decnncl2 9497 |
| Copyright terms: Public domain | W3C validator |