ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  numnncl2 GIF version

Theorem numnncl2 9344
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
numnncl2.1 𝑇 ∈ ℕ
numnncl2.2 𝐴 ∈ ℕ
Assertion
Ref Expression
numnncl2 ((𝑇 · 𝐴) + 0) ∈ ℕ

Proof of Theorem numnncl2
StepHypRef Expression
1 numnncl2.1 . . . . 5 𝑇 ∈ ℕ
2 numnncl2.2 . . . . 5 𝐴 ∈ ℕ
31, 2nnmulcli 8879 . . . 4 (𝑇 · 𝐴) ∈ ℕ
43nncni 8867 . . 3 (𝑇 · 𝐴) ∈ ℂ
54addid1i 8040 . 2 ((𝑇 · 𝐴) + 0) = (𝑇 · 𝐴)
65, 3eqeltri 2239 1 ((𝑇 · 𝐴) + 0) ∈ ℕ
Colors of variables: wff set class
Syntax hints:  wcel 2136  (class class class)co 5842  0cc0 7753   + caddc 7756   · cmul 7758  cn 8857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-1rid 7860  ax-0id 7861  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-inn 8858
This theorem is referenced by:  decnncl2  9345
  Copyright terms: Public domain W3C validator