![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > numnncl2 | GIF version |
Description: Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
numnncl2.1 | โข ๐ โ โ |
numnncl2.2 | โข ๐ด โ โ |
Ref | Expression |
---|---|
numnncl2 | โข ((๐ ยท ๐ด) + 0) โ โ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numnncl2.1 | . . . . 5 โข ๐ โ โ | |
2 | numnncl2.2 | . . . . 5 โข ๐ด โ โ | |
3 | 1, 2 | nnmulcli 8944 | . . . 4 โข (๐ ยท ๐ด) โ โ |
4 | 3 | nncni 8932 | . . 3 โข (๐ ยท ๐ด) โ โ |
5 | 4 | addid1i 8102 | . 2 โข ((๐ ยท ๐ด) + 0) = (๐ ยท ๐ด) |
6 | 5, 3 | eqeltri 2250 | 1 โข ((๐ ยท ๐ด) + 0) โ โ |
Colors of variables: wff set class |
Syntax hints: โ wcel 2148 (class class class)co 5878 0cc0 7814 + caddc 7817 ยท cmul 7819 โcn 8922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4123 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-1rid 7921 ax-0id 7922 ax-cnre 7925 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-iota 5180 df-fv 5226 df-ov 5881 df-inn 8923 |
This theorem is referenced by: decnncl2 9410 |
Copyright terms: Public domain | W3C validator |