ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrelem GIF version

Theorem fsumrelem 11782
Description: Lemma for fsumre 11783, fsumim 11784, and fsumcj 11785. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11666 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21fveq2d 5580 . . 3 (𝑤 = ∅ → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 11666 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
42, 3eqeq12d 2220 . 2 (𝑤 = ∅ → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)))
5 sumeq1 11666 . . . 4 (𝑤 = 𝑢 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑢 𝐵)
65fveq2d 5580 . . 3 (𝑤 = 𝑢 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝑢 𝐵))
7 sumeq1 11666 . . 3 (𝑤 = 𝑢 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝑢 (𝐹𝐵))
86, 7eqeq12d 2220 . 2 (𝑤 = 𝑢 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)))
9 sumeq1 11666 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵)
109fveq2d 5580 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵))
11 sumeq1 11666 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
1210, 11eqeq12d 2220 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
13 sumeq1 11666 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1413fveq2d 5580 . . 3 (𝑤 = 𝐴 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝐴 𝐵))
15 sumeq1 11666 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝐴 (𝐹𝐵))
1614, 15eqeq12d 2220 . 2 (𝑤 = 𝐴 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
17 0cn 8064 . . . . . . . 8 0 ∈ ℂ
18 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
1918ffvelcdmi 5714 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
2017, 19ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
2120addridi 8214 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
22 fvoveq1 5967 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
23 fveq2 5576 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
2423oveq1d 5959 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
2522, 24eqeq12d 2220 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
26 oveq2 5952 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
27 00id 8213 . . . . . . . . . . 11 (0 + 0) = 0
2826, 27eqtrdi 2254 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
2928fveq2d 5580 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
30 fveq2 5576 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
3130oveq2d 5960 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
3229, 31eqeq12d 2220 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
33 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
3425, 32, 33vtocl2ga 2841 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
3517, 17, 34mp2an 426 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
3621, 35eqtr2i 2227 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
3720, 20, 17addcani 8254 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
3836, 37mpbi 145 . . . 4 (𝐹‘0) = 0
39 sum0 11699 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
4039fveq2i 5579 . . . 4 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = (𝐹‘0)
41 sum0 11699 . . . 4 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
4238, 40, 413eqtr4i 2236 . . 3 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)
4342a1i 9 . 2 (𝜑 → (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
44 nfv 1551 . . . . . . . 8 𝑘((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢)))
45 nfcsb1v 3126 . . . . . . . 8 𝑘𝑣 / 𝑘𝐵
46 simplr 528 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢 ∈ Fin)
47 vex 2775 . . . . . . . . 9 𝑣 ∈ V
4847a1i 9 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ V)
49 simprr 531 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
5049eldifbd 3178 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ¬ 𝑣𝑢)
51 simplll 533 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝜑)
52 simprl 529 . . . . . . . . . 10 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
5352sselda 3193 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝑘𝐴)
54 fsumre.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5551, 53, 54syl2anc 411 . . . . . . . 8 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐵 ∈ ℂ)
56 csbeq1a 3102 . . . . . . . 8 (𝑘 = 𝑣𝐵 = 𝑣 / 𝑘𝐵)
5749eldifad 3177 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣𝐴)
5854ralrimiva 2579 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5958ad2antrr 488 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
6045nfel1 2359 . . . . . . . . . 10 𝑘𝑣 / 𝑘𝐵 ∈ ℂ
6156eleq1d 2274 . . . . . . . . . 10 (𝑘 = 𝑣 → (𝐵 ∈ ℂ ↔ 𝑣 / 𝑘𝐵 ∈ ℂ))
6260, 61rspc 2871 . . . . . . . . 9 (𝑣𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑣 / 𝑘𝐵 ∈ ℂ))
6357, 59, 62sylc 62 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 / 𝑘𝐵 ∈ ℂ)
6444, 45, 46, 48, 50, 55, 56, 63fsumsplitsn 11721 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6564adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6665fveq2d 5580 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
6746, 55fsumcl 11711 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6867adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6963adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → 𝑣 / 𝑘𝐵 ∈ ℂ)
70 fvoveq1 5967 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)))
71 fveq2 5576 . . . . . . . . 9 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹𝑥) = (𝐹‘Σ𝑘𝑢 𝐵))
7271oveq1d 5959 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)))
7370, 72eqeq12d 2220 . . . . . . 7 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦))))
74 oveq2 5952 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (Σ𝑘𝑢 𝐵 + 𝑦) = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
7574fveq2d 5580 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
76 fveq2 5576 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹𝑦) = (𝐹𝑣 / 𝑘𝐵))
7776oveq2d 5960 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
7875, 77eqeq12d 2220 . . . . . . 7 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵))))
7973, 78, 33vtocl2ga 2841 . . . . . 6 ((Σ𝑘𝑢 𝐵 ∈ ℂ ∧ 𝑣 / 𝑘𝐵 ∈ ℂ) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8068, 69, 79syl2anc 411 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
81 simpr 110 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵))
8281oveq1d 5959 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8366, 80, 823eqtrd 2242 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
84 nfcv 2348 . . . . . . 7 𝑘𝐹
8584, 45nffv 5586 . . . . . 6 𝑘(𝐹𝑣 / 𝑘𝐵)
8618a1i 9 . . . . . . 7 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐹:ℂ⟶ℂ)
8786, 55ffvelcdmd 5716 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → (𝐹𝐵) ∈ ℂ)
8856fveq2d 5580 . . . . . 6 (𝑘 = 𝑣 → (𝐹𝐵) = (𝐹𝑣 / 𝑘𝐵))
8918a1i 9 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝐹:ℂ⟶ℂ)
9089, 63ffvelcdmd 5716 . . . . . 6 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (𝐹𝑣 / 𝑘𝐵) ∈ ℂ)
9144, 85, 46, 48, 50, 87, 88, 90fsumsplitsn 11721 . . . . 5 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9291adantr 276 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9383, 92eqtr4d 2241 . . 3 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
9493ex 115 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ((𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
95 fsumre.1 . 2 (𝜑𝐴 ∈ Fin)
964, 8, 12, 16, 43, 94, 95findcard2sd 6989 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wral 2484  Vcvv 2772  csb 3093  cdif 3163  cun 3164  wss 3166  c0 3460  {csn 3633  wf 5267  cfv 5271  (class class class)co 5944  Fincfn 6827  cc 7923  0cc0 7925   + caddc 7928  Σcsu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  fsumre  11783  fsumim  11784  fsumcj  11785
  Copyright terms: Public domain W3C validator