ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrelem GIF version

Theorem fsumrelem 11240
Description: Lemma for fsumre 11241, fsumim 11242, and fsumcj 11243. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11124 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21fveq2d 5425 . . 3 (𝑤 = ∅ → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 11124 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
42, 3eqeq12d 2154 . 2 (𝑤 = ∅ → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)))
5 sumeq1 11124 . . . 4 (𝑤 = 𝑢 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑢 𝐵)
65fveq2d 5425 . . 3 (𝑤 = 𝑢 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝑢 𝐵))
7 sumeq1 11124 . . 3 (𝑤 = 𝑢 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝑢 (𝐹𝐵))
86, 7eqeq12d 2154 . 2 (𝑤 = 𝑢 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)))
9 sumeq1 11124 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵)
109fveq2d 5425 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵))
11 sumeq1 11124 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
1210, 11eqeq12d 2154 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
13 sumeq1 11124 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1413fveq2d 5425 . . 3 (𝑤 = 𝐴 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝐴 𝐵))
15 sumeq1 11124 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝐴 (𝐹𝐵))
1614, 15eqeq12d 2154 . 2 (𝑤 = 𝐴 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
17 0cn 7758 . . . . . . . 8 0 ∈ ℂ
18 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
1918ffvelrni 5554 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
2017, 19ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
2120addid1i 7904 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
22 fvoveq1 5797 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
23 fveq2 5421 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
2423oveq1d 5789 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
2522, 24eqeq12d 2154 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
26 oveq2 5782 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
27 00id 7903 . . . . . . . . . . 11 (0 + 0) = 0
2826, 27syl6eq 2188 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
2928fveq2d 5425 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
30 fveq2 5421 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
3130oveq2d 5790 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
3229, 31eqeq12d 2154 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
33 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
3425, 32, 33vtocl2ga 2754 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
3517, 17, 34mp2an 422 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
3621, 35eqtr2i 2161 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
3720, 20, 17addcani 7944 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
3836, 37mpbi 144 . . . 4 (𝐹‘0) = 0
39 sum0 11157 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
4039fveq2i 5424 . . . 4 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = (𝐹‘0)
41 sum0 11157 . . . 4 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
4238, 40, 413eqtr4i 2170 . . 3 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)
4342a1i 9 . 2 (𝜑 → (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
44 nfv 1508 . . . . . . . 8 𝑘((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢)))
45 nfcsb1v 3035 . . . . . . . 8 𝑘𝑣 / 𝑘𝐵
46 simplr 519 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢 ∈ Fin)
47 vex 2689 . . . . . . . . 9 𝑣 ∈ V
4847a1i 9 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ V)
49 simprr 521 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
5049eldifbd 3083 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ¬ 𝑣𝑢)
51 simplll 522 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝜑)
52 simprl 520 . . . . . . . . . 10 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
5352sselda 3097 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝑘𝐴)
54 fsumre.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5551, 53, 54syl2anc 408 . . . . . . . 8 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐵 ∈ ℂ)
56 csbeq1a 3012 . . . . . . . 8 (𝑘 = 𝑣𝐵 = 𝑣 / 𝑘𝐵)
5749eldifad 3082 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣𝐴)
5854ralrimiva 2505 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5958ad2antrr 479 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
6045nfel1 2292 . . . . . . . . . 10 𝑘𝑣 / 𝑘𝐵 ∈ ℂ
6156eleq1d 2208 . . . . . . . . . 10 (𝑘 = 𝑣 → (𝐵 ∈ ℂ ↔ 𝑣 / 𝑘𝐵 ∈ ℂ))
6260, 61rspc 2783 . . . . . . . . 9 (𝑣𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑣 / 𝑘𝐵 ∈ ℂ))
6357, 59, 62sylc 62 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 / 𝑘𝐵 ∈ ℂ)
6444, 45, 46, 48, 50, 55, 56, 63fsumsplitsn 11179 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6564adantr 274 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6665fveq2d 5425 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
6746, 55fsumcl 11169 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6867adantr 274 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6963adantr 274 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → 𝑣 / 𝑘𝐵 ∈ ℂ)
70 fvoveq1 5797 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)))
71 fveq2 5421 . . . . . . . . 9 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹𝑥) = (𝐹‘Σ𝑘𝑢 𝐵))
7271oveq1d 5789 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)))
7370, 72eqeq12d 2154 . . . . . . 7 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦))))
74 oveq2 5782 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (Σ𝑘𝑢 𝐵 + 𝑦) = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
7574fveq2d 5425 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
76 fveq2 5421 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹𝑦) = (𝐹𝑣 / 𝑘𝐵))
7776oveq2d 5790 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
7875, 77eqeq12d 2154 . . . . . . 7 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵))))
7973, 78, 33vtocl2ga 2754 . . . . . 6 ((Σ𝑘𝑢 𝐵 ∈ ℂ ∧ 𝑣 / 𝑘𝐵 ∈ ℂ) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8068, 69, 79syl2anc 408 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
81 simpr 109 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵))
8281oveq1d 5789 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8366, 80, 823eqtrd 2176 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
84 nfcv 2281 . . . . . . 7 𝑘𝐹
8584, 45nffv 5431 . . . . . 6 𝑘(𝐹𝑣 / 𝑘𝐵)
8618a1i 9 . . . . . . 7 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐹:ℂ⟶ℂ)
8786, 55ffvelrnd 5556 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → (𝐹𝐵) ∈ ℂ)
8856fveq2d 5425 . . . . . 6 (𝑘 = 𝑣 → (𝐹𝐵) = (𝐹𝑣 / 𝑘𝐵))
8918a1i 9 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝐹:ℂ⟶ℂ)
9089, 63ffvelrnd 5556 . . . . . 6 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (𝐹𝑣 / 𝑘𝐵) ∈ ℂ)
9144, 85, 46, 48, 50, 87, 88, 90fsumsplitsn 11179 . . . . 5 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9291adantr 274 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9383, 92eqtr4d 2175 . . 3 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
9493ex 114 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ((𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
95 fsumre.1 . 2 (𝜑𝐴 ∈ Fin)
964, 8, 12, 16, 43, 94, 95findcard2sd 6786 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2416  Vcvv 2686  csb 3003  cdif 3068  cun 3069  wss 3071  c0 3363  {csn 3527  wf 5119  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7618  0cc0 7620   + caddc 7623  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsumre  11241  fsumim  11242  fsumcj  11243
  Copyright terms: Public domain W3C validator