ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrelem GIF version

Theorem fsumrelem 11463
Description: Lemma for fsumre 11464, fsumim 11465, and fsumcj 11466. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11347 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21fveq2d 5515 . . 3 (𝑤 = ∅ → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 11347 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
42, 3eqeq12d 2192 . 2 (𝑤 = ∅ → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)))
5 sumeq1 11347 . . . 4 (𝑤 = 𝑢 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑢 𝐵)
65fveq2d 5515 . . 3 (𝑤 = 𝑢 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝑢 𝐵))
7 sumeq1 11347 . . 3 (𝑤 = 𝑢 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝑢 (𝐹𝐵))
86, 7eqeq12d 2192 . 2 (𝑤 = 𝑢 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)))
9 sumeq1 11347 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵)
109fveq2d 5515 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵))
11 sumeq1 11347 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
1210, 11eqeq12d 2192 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
13 sumeq1 11347 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1413fveq2d 5515 . . 3 (𝑤 = 𝐴 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝐴 𝐵))
15 sumeq1 11347 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝐴 (𝐹𝐵))
1614, 15eqeq12d 2192 . 2 (𝑤 = 𝐴 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
17 0cn 7940 . . . . . . . 8 0 ∈ ℂ
18 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
1918ffvelcdmi 5646 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
2017, 19ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
2120addid1i 8089 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
22 fvoveq1 5892 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
23 fveq2 5511 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
2423oveq1d 5884 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
2522, 24eqeq12d 2192 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
26 oveq2 5877 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
27 00id 8088 . . . . . . . . . . 11 (0 + 0) = 0
2826, 27eqtrdi 2226 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
2928fveq2d 5515 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
30 fveq2 5511 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
3130oveq2d 5885 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
3229, 31eqeq12d 2192 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
33 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
3425, 32, 33vtocl2ga 2805 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
3517, 17, 34mp2an 426 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
3621, 35eqtr2i 2199 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
3720, 20, 17addcani 8129 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
3836, 37mpbi 145 . . . 4 (𝐹‘0) = 0
39 sum0 11380 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
4039fveq2i 5514 . . . 4 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = (𝐹‘0)
41 sum0 11380 . . . 4 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
4238, 40, 413eqtr4i 2208 . . 3 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)
4342a1i 9 . 2 (𝜑 → (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
44 nfv 1528 . . . . . . . 8 𝑘((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢)))
45 nfcsb1v 3090 . . . . . . . 8 𝑘𝑣 / 𝑘𝐵
46 simplr 528 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢 ∈ Fin)
47 vex 2740 . . . . . . . . 9 𝑣 ∈ V
4847a1i 9 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ V)
49 simprr 531 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
5049eldifbd 3141 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ¬ 𝑣𝑢)
51 simplll 533 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝜑)
52 simprl 529 . . . . . . . . . 10 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
5352sselda 3155 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝑘𝐴)
54 fsumre.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5551, 53, 54syl2anc 411 . . . . . . . 8 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐵 ∈ ℂ)
56 csbeq1a 3066 . . . . . . . 8 (𝑘 = 𝑣𝐵 = 𝑣 / 𝑘𝐵)
5749eldifad 3140 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣𝐴)
5854ralrimiva 2550 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5958ad2antrr 488 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
6045nfel1 2330 . . . . . . . . . 10 𝑘𝑣 / 𝑘𝐵 ∈ ℂ
6156eleq1d 2246 . . . . . . . . . 10 (𝑘 = 𝑣 → (𝐵 ∈ ℂ ↔ 𝑣 / 𝑘𝐵 ∈ ℂ))
6260, 61rspc 2835 . . . . . . . . 9 (𝑣𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑣 / 𝑘𝐵 ∈ ℂ))
6357, 59, 62sylc 62 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 / 𝑘𝐵 ∈ ℂ)
6444, 45, 46, 48, 50, 55, 56, 63fsumsplitsn 11402 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6564adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6665fveq2d 5515 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
6746, 55fsumcl 11392 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6867adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6963adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → 𝑣 / 𝑘𝐵 ∈ ℂ)
70 fvoveq1 5892 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)))
71 fveq2 5511 . . . . . . . . 9 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹𝑥) = (𝐹‘Σ𝑘𝑢 𝐵))
7271oveq1d 5884 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)))
7370, 72eqeq12d 2192 . . . . . . 7 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦))))
74 oveq2 5877 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (Σ𝑘𝑢 𝐵 + 𝑦) = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
7574fveq2d 5515 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
76 fveq2 5511 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹𝑦) = (𝐹𝑣 / 𝑘𝐵))
7776oveq2d 5885 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
7875, 77eqeq12d 2192 . . . . . . 7 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵))))
7973, 78, 33vtocl2ga 2805 . . . . . 6 ((Σ𝑘𝑢 𝐵 ∈ ℂ ∧ 𝑣 / 𝑘𝐵 ∈ ℂ) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8068, 69, 79syl2anc 411 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
81 simpr 110 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵))
8281oveq1d 5884 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8366, 80, 823eqtrd 2214 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
84 nfcv 2319 . . . . . . 7 𝑘𝐹
8584, 45nffv 5521 . . . . . 6 𝑘(𝐹𝑣 / 𝑘𝐵)
8618a1i 9 . . . . . . 7 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐹:ℂ⟶ℂ)
8786, 55ffvelcdmd 5648 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → (𝐹𝐵) ∈ ℂ)
8856fveq2d 5515 . . . . . 6 (𝑘 = 𝑣 → (𝐹𝐵) = (𝐹𝑣 / 𝑘𝐵))
8918a1i 9 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝐹:ℂ⟶ℂ)
9089, 63ffvelcdmd 5648 . . . . . 6 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (𝐹𝑣 / 𝑘𝐵) ∈ ℂ)
9144, 85, 46, 48, 50, 87, 88, 90fsumsplitsn 11402 . . . . 5 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9291adantr 276 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9383, 92eqtr4d 2213 . . 3 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
9493ex 115 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ((𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
95 fsumre.1 . 2 (𝜑𝐴 ∈ Fin)
964, 8, 12, 16, 43, 94, 95findcard2sd 6886 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  csb 3057  cdif 3126  cun 3127  wss 3129  c0 3422  {csn 3591  wf 5208  cfv 5212  (class class class)co 5869  Fincfn 6734  cc 7800  0cc0 7802   + caddc 7805  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  fsumre  11464  fsumim  11465  fsumcj  11466
  Copyright terms: Public domain W3C validator