ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrelem GIF version

Theorem fsumrelem 11636
Description: Lemma for fsumre 11637, fsumim 11638, and fsumcj 11639. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11520 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21fveq2d 5562 . . 3 (𝑤 = ∅ → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 11520 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
42, 3eqeq12d 2211 . 2 (𝑤 = ∅ → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)))
5 sumeq1 11520 . . . 4 (𝑤 = 𝑢 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑢 𝐵)
65fveq2d 5562 . . 3 (𝑤 = 𝑢 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝑢 𝐵))
7 sumeq1 11520 . . 3 (𝑤 = 𝑢 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝑢 (𝐹𝐵))
86, 7eqeq12d 2211 . 2 (𝑤 = 𝑢 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)))
9 sumeq1 11520 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵)
109fveq2d 5562 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵))
11 sumeq1 11520 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
1210, 11eqeq12d 2211 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
13 sumeq1 11520 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1413fveq2d 5562 . . 3 (𝑤 = 𝐴 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝐴 𝐵))
15 sumeq1 11520 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝐴 (𝐹𝐵))
1614, 15eqeq12d 2211 . 2 (𝑤 = 𝐴 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
17 0cn 8018 . . . . . . . 8 0 ∈ ℂ
18 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
1918ffvelcdmi 5696 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
2017, 19ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
2120addridi 8168 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
22 fvoveq1 5945 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
23 fveq2 5558 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
2423oveq1d 5937 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
2522, 24eqeq12d 2211 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
26 oveq2 5930 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
27 00id 8167 . . . . . . . . . . 11 (0 + 0) = 0
2826, 27eqtrdi 2245 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
2928fveq2d 5562 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
30 fveq2 5558 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
3130oveq2d 5938 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
3229, 31eqeq12d 2211 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
33 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
3425, 32, 33vtocl2ga 2832 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
3517, 17, 34mp2an 426 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
3621, 35eqtr2i 2218 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
3720, 20, 17addcani 8208 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
3836, 37mpbi 145 . . . 4 (𝐹‘0) = 0
39 sum0 11553 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
4039fveq2i 5561 . . . 4 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = (𝐹‘0)
41 sum0 11553 . . . 4 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
4238, 40, 413eqtr4i 2227 . . 3 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)
4342a1i 9 . 2 (𝜑 → (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
44 nfv 1542 . . . . . . . 8 𝑘((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢)))
45 nfcsb1v 3117 . . . . . . . 8 𝑘𝑣 / 𝑘𝐵
46 simplr 528 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢 ∈ Fin)
47 vex 2766 . . . . . . . . 9 𝑣 ∈ V
4847a1i 9 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ V)
49 simprr 531 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
5049eldifbd 3169 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ¬ 𝑣𝑢)
51 simplll 533 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝜑)
52 simprl 529 . . . . . . . . . 10 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
5352sselda 3183 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝑘𝐴)
54 fsumre.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5551, 53, 54syl2anc 411 . . . . . . . 8 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐵 ∈ ℂ)
56 csbeq1a 3093 . . . . . . . 8 (𝑘 = 𝑣𝐵 = 𝑣 / 𝑘𝐵)
5749eldifad 3168 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣𝐴)
5854ralrimiva 2570 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5958ad2antrr 488 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
6045nfel1 2350 . . . . . . . . . 10 𝑘𝑣 / 𝑘𝐵 ∈ ℂ
6156eleq1d 2265 . . . . . . . . . 10 (𝑘 = 𝑣 → (𝐵 ∈ ℂ ↔ 𝑣 / 𝑘𝐵 ∈ ℂ))
6260, 61rspc 2862 . . . . . . . . 9 (𝑣𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑣 / 𝑘𝐵 ∈ ℂ))
6357, 59, 62sylc 62 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 / 𝑘𝐵 ∈ ℂ)
6444, 45, 46, 48, 50, 55, 56, 63fsumsplitsn 11575 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6564adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6665fveq2d 5562 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
6746, 55fsumcl 11565 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6867adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6963adantr 276 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → 𝑣 / 𝑘𝐵 ∈ ℂ)
70 fvoveq1 5945 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)))
71 fveq2 5558 . . . . . . . . 9 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹𝑥) = (𝐹‘Σ𝑘𝑢 𝐵))
7271oveq1d 5937 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)))
7370, 72eqeq12d 2211 . . . . . . 7 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦))))
74 oveq2 5930 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (Σ𝑘𝑢 𝐵 + 𝑦) = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
7574fveq2d 5562 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
76 fveq2 5558 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹𝑦) = (𝐹𝑣 / 𝑘𝐵))
7776oveq2d 5938 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
7875, 77eqeq12d 2211 . . . . . . 7 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵))))
7973, 78, 33vtocl2ga 2832 . . . . . 6 ((Σ𝑘𝑢 𝐵 ∈ ℂ ∧ 𝑣 / 𝑘𝐵 ∈ ℂ) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8068, 69, 79syl2anc 411 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
81 simpr 110 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵))
8281oveq1d 5937 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8366, 80, 823eqtrd 2233 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
84 nfcv 2339 . . . . . . 7 𝑘𝐹
8584, 45nffv 5568 . . . . . 6 𝑘(𝐹𝑣 / 𝑘𝐵)
8618a1i 9 . . . . . . 7 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐹:ℂ⟶ℂ)
8786, 55ffvelcdmd 5698 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → (𝐹𝐵) ∈ ℂ)
8856fveq2d 5562 . . . . . 6 (𝑘 = 𝑣 → (𝐹𝐵) = (𝐹𝑣 / 𝑘𝐵))
8918a1i 9 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝐹:ℂ⟶ℂ)
9089, 63ffvelcdmd 5698 . . . . . 6 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (𝐹𝑣 / 𝑘𝐵) ∈ ℂ)
9144, 85, 46, 48, 50, 87, 88, 90fsumsplitsn 11575 . . . . 5 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9291adantr 276 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9383, 92eqtr4d 2232 . . 3 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
9493ex 115 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ((𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
95 fsumre.1 . 2 (𝜑𝐴 ∈ Fin)
964, 8, 12, 16, 43, 94, 95findcard2sd 6953 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  csb 3084  cdif 3154  cun 3155  wss 3157  c0 3450  {csn 3622  wf 5254  cfv 5258  (class class class)co 5922  Fincfn 6799  cc 7877  0cc0 7879   + caddc 7882  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  fsumre  11637  fsumim  11638  fsumcj  11639
  Copyright terms: Public domain W3C validator