ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrelem GIF version

Theorem fsumrelem 11233
Description: Lemma for fsumre 11234, fsumim 11235, and fsumcj 11236. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1 (𝜑𝐴 ∈ Fin)
fsumre.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
fsumrelem.3 𝐹:ℂ⟶ℂ
fsumrelem.4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
Assertion
Ref Expression
fsumrelem (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝑥,𝐵,𝑦   𝑘,𝐹,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumrelem
Dummy variables 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11117 . . . 4 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
21fveq2d 5418 . . 3 (𝑤 = ∅ → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ ∅ 𝐵))
3 sumeq1 11117 . . 3 (𝑤 = ∅ → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
42, 3eqeq12d 2152 . 2 (𝑤 = ∅ → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)))
5 sumeq1 11117 . . . 4 (𝑤 = 𝑢 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑢 𝐵)
65fveq2d 5418 . . 3 (𝑤 = 𝑢 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝑢 𝐵))
7 sumeq1 11117 . . 3 (𝑤 = 𝑢 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝑢 (𝐹𝐵))
86, 7eqeq12d 2152 . 2 (𝑤 = 𝑢 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)))
9 sumeq1 11117 . . . 4 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵)
109fveq2d 5418 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵))
11 sumeq1 11117 . . 3 (𝑤 = (𝑢 ∪ {𝑣}) → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
1210, 11eqeq12d 2152 . 2 (𝑤 = (𝑢 ∪ {𝑣}) → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
13 sumeq1 11117 . . . 4 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
1413fveq2d 5418 . . 3 (𝑤 = 𝐴 → (𝐹‘Σ𝑘𝑤 𝐵) = (𝐹‘Σ𝑘𝐴 𝐵))
15 sumeq1 11117 . . 3 (𝑤 = 𝐴 → Σ𝑘𝑤 (𝐹𝐵) = Σ𝑘𝐴 (𝐹𝐵))
1614, 15eqeq12d 2152 . 2 (𝑤 = 𝐴 → ((𝐹‘Σ𝑘𝑤 𝐵) = Σ𝑘𝑤 (𝐹𝐵) ↔ (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵)))
17 0cn 7751 . . . . . . . 8 0 ∈ ℂ
18 fsumrelem.3 . . . . . . . . 9 𝐹:ℂ⟶ℂ
1918ffvelrni 5547 . . . . . . . 8 (0 ∈ ℂ → (𝐹‘0) ∈ ℂ)
2017, 19ax-mp 5 . . . . . . 7 (𝐹‘0) ∈ ℂ
2120addid1i 7897 . . . . . 6 ((𝐹‘0) + 0) = (𝐹‘0)
22 fvoveq1 5790 . . . . . . . . 9 (𝑥 = 0 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(0 + 𝑦)))
23 fveq2 5414 . . . . . . . . . 10 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
2423oveq1d 5782 . . . . . . . . 9 (𝑥 = 0 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹𝑦)))
2522, 24eqeq12d 2152 . . . . . . . 8 (𝑥 = 0 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦))))
26 oveq2 5775 . . . . . . . . . . 11 (𝑦 = 0 → (0 + 𝑦) = (0 + 0))
27 00id 7896 . . . . . . . . . . 11 (0 + 0) = 0
2826, 27syl6eq 2186 . . . . . . . . . 10 (𝑦 = 0 → (0 + 𝑦) = 0)
2928fveq2d 5418 . . . . . . . . 9 (𝑦 = 0 → (𝐹‘(0 + 𝑦)) = (𝐹‘0))
30 fveq2 5414 . . . . . . . . . 10 (𝑦 = 0 → (𝐹𝑦) = (𝐹‘0))
3130oveq2d 5783 . . . . . . . . 9 (𝑦 = 0 → ((𝐹‘0) + (𝐹𝑦)) = ((𝐹‘0) + (𝐹‘0)))
3229, 31eqeq12d 2152 . . . . . . . 8 (𝑦 = 0 → ((𝐹‘(0 + 𝑦)) = ((𝐹‘0) + (𝐹𝑦)) ↔ (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))))
33 fsumrelem.4 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)))
3425, 32, 33vtocl2ga 2749 . . . . . . 7 ((0 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐹‘0) = ((𝐹‘0) + (𝐹‘0)))
3517, 17, 34mp2an 422 . . . . . 6 (𝐹‘0) = ((𝐹‘0) + (𝐹‘0))
3621, 35eqtr2i 2159 . . . . 5 ((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0)
3720, 20, 17addcani 7937 . . . . 5 (((𝐹‘0) + (𝐹‘0)) = ((𝐹‘0) + 0) ↔ (𝐹‘0) = 0)
3836, 37mpbi 144 . . . 4 (𝐹‘0) = 0
39 sum0 11150 . . . . 5 Σ𝑘 ∈ ∅ 𝐵 = 0
4039fveq2i 5417 . . . 4 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = (𝐹‘0)
41 sum0 11150 . . . 4 Σ𝑘 ∈ ∅ (𝐹𝐵) = 0
4238, 40, 413eqtr4i 2168 . . 3 (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵)
4342a1i 9 . 2 (𝜑 → (𝐹‘Σ𝑘 ∈ ∅ 𝐵) = Σ𝑘 ∈ ∅ (𝐹𝐵))
44 nfv 1508 . . . . . . . 8 𝑘((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢)))
45 nfcsb1v 3030 . . . . . . . 8 𝑘𝑣 / 𝑘𝐵
46 simplr 519 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢 ∈ Fin)
47 vex 2684 . . . . . . . . 9 𝑣 ∈ V
4847a1i 9 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ V)
49 simprr 521 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 ∈ (𝐴𝑢))
5049eldifbd 3078 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ¬ 𝑣𝑢)
51 simplll 522 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝜑)
52 simprl 520 . . . . . . . . . 10 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑢𝐴)
5352sselda 3092 . . . . . . . . 9 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝑘𝐴)
54 fsumre.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
5551, 53, 54syl2anc 408 . . . . . . . 8 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐵 ∈ ℂ)
56 csbeq1a 3007 . . . . . . . 8 (𝑘 = 𝑣𝐵 = 𝑣 / 𝑘𝐵)
5749eldifad 3077 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣𝐴)
5854ralrimiva 2503 . . . . . . . . . 10 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
5958ad2antrr 479 . . . . . . . . 9 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ∀𝑘𝐴 𝐵 ∈ ℂ)
6045nfel1 2290 . . . . . . . . . 10 𝑘𝑣 / 𝑘𝐵 ∈ ℂ
6156eleq1d 2206 . . . . . . . . . 10 (𝑘 = 𝑣 → (𝐵 ∈ ℂ ↔ 𝑣 / 𝑘𝐵 ∈ ℂ))
6260, 61rspc 2778 . . . . . . . . 9 (𝑣𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑣 / 𝑘𝐵 ∈ ℂ))
6357, 59, 62sylc 62 . . . . . . . 8 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝑣 / 𝑘𝐵 ∈ ℂ)
6444, 45, 46, 48, 50, 55, 56, 63fsumsplitsn 11172 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6564adantr 274 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵 = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
6665fveq2d 5418 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
6746, 55fsumcl 11162 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6867adantr 274 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘𝑢 𝐵 ∈ ℂ)
6963adantr 274 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → 𝑣 / 𝑘𝐵 ∈ ℂ)
70 fvoveq1 5790 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)))
71 fveq2 5414 . . . . . . . . 9 (𝑥 = Σ𝑘𝑢 𝐵 → (𝐹𝑥) = (𝐹‘Σ𝑘𝑢 𝐵))
7271oveq1d 5782 . . . . . . . 8 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹𝑥) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)))
7370, 72eqeq12d 2152 . . . . . . 7 (𝑥 = Σ𝑘𝑢 𝐵 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦))))
74 oveq2 5775 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (Σ𝑘𝑢 𝐵 + 𝑦) = (Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵))
7574fveq2d 5418 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)))
76 fveq2 5414 . . . . . . . . 9 (𝑦 = 𝑣 / 𝑘𝐵 → (𝐹𝑦) = (𝐹𝑣 / 𝑘𝐵))
7776oveq2d 5783 . . . . . . . 8 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
7875, 77eqeq12d 2152 . . . . . . 7 (𝑦 = 𝑣 / 𝑘𝐵 → ((𝐹‘(Σ𝑘𝑢 𝐵 + 𝑦)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑦)) ↔ (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵))))
7973, 78, 33vtocl2ga 2749 . . . . . 6 ((Σ𝑘𝑢 𝐵 ∈ ℂ ∧ 𝑣 / 𝑘𝐵 ∈ ℂ) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8068, 69, 79syl2anc 408 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘(Σ𝑘𝑢 𝐵 + 𝑣 / 𝑘𝐵)) = ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)))
81 simpr 109 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵))
8281oveq1d 5782 . . . . 5 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → ((𝐹‘Σ𝑘𝑢 𝐵) + (𝐹𝑣 / 𝑘𝐵)) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
8366, 80, 823eqtrd 2174 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
84 nfcv 2279 . . . . . . 7 𝑘𝐹
8584, 45nffv 5424 . . . . . 6 𝑘(𝐹𝑣 / 𝑘𝐵)
8618a1i 9 . . . . . . 7 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → 𝐹:ℂ⟶ℂ)
8786, 55ffvelrnd 5549 . . . . . 6 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ 𝑘𝑢) → (𝐹𝐵) ∈ ℂ)
8856fveq2d 5418 . . . . . 6 (𝑘 = 𝑣 → (𝐹𝐵) = (𝐹𝑣 / 𝑘𝐵))
8918a1i 9 . . . . . . 7 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → 𝐹:ℂ⟶ℂ)
9089, 63ffvelrnd 5549 . . . . . 6 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → (𝐹𝑣 / 𝑘𝐵) ∈ ℂ)
9144, 85, 46, 48, 50, 87, 88, 90fsumsplitsn 11172 . . . . 5 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9291adantr 274 . . . 4 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵) = (Σ𝑘𝑢 (𝐹𝐵) + (𝐹𝑣 / 𝑘𝐵)))
9383, 92eqtr4d 2173 . . 3 ((((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) ∧ (𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵)) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵))
9493ex 114 . 2 (((𝜑𝑢 ∈ Fin) ∧ (𝑢𝐴𝑣 ∈ (𝐴𝑢))) → ((𝐹‘Σ𝑘𝑢 𝐵) = Σ𝑘𝑢 (𝐹𝐵) → (𝐹‘Σ𝑘 ∈ (𝑢 ∪ {𝑣})𝐵) = Σ𝑘 ∈ (𝑢 ∪ {𝑣})(𝐹𝐵)))
95 fsumre.1 . 2 (𝜑𝐴 ∈ Fin)
964, 8, 12, 16, 43, 94, 95findcard2sd 6779 1 (𝜑 → (𝐹‘Σ𝑘𝐴 𝐵) = Σ𝑘𝐴 (𝐹𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  wral 2414  Vcvv 2681  csb 2998  cdif 3063  cun 3064  wss 3066  c0 3358  {csn 3522  wf 5114  cfv 5118  (class class class)co 5767  Fincfn 6627  cc 7611  0cc0 7613   + caddc 7616  Σcsu 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116
This theorem is referenced by:  fsumre  11234  fsumim  11235  fsumcj  11236
  Copyright terms: Public domain W3C validator