| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9p1e10 | GIF version | ||
| Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| 9p1e10 | ⊢ (9 + 1) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 9504 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9nn 9204 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 3 | 1nn 9046 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 4 | nnaddcl 9055 | . . . . . 6 ⊢ ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . 5 ⊢ (9 + 1) ∈ ℕ |
| 6 | 5 | nncni 9045 | . . . 4 ⊢ (9 + 1) ∈ ℂ |
| 7 | 6 | mulridi 8073 | . . 3 ⊢ ((9 + 1) · 1) = (9 + 1) |
| 8 | 7 | oveq1i 5953 | . 2 ⊢ (((9 + 1) · 1) + 0) = ((9 + 1) + 0) |
| 9 | 6 | addridi 8213 | . 2 ⊢ ((9 + 1) + 0) = (9 + 1) |
| 10 | 1, 8, 9 | 3eqtrri 2230 | 1 ⊢ (9 + 1) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 · cmul 7929 ℕcn 9035 9c9 9093 ;cdc 9503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-sep 4161 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-1rid 8031 ax-0id 8032 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-dec 9504 |
| This theorem is referenced by: dfdec10 9506 10nn 9518 le9lt10 9529 decsucc 9543 5p5e10 9573 6p4e10 9574 7p3e10 9577 8p2e10 9582 9p2e11 9589 10m1e9 9598 9lt10 9633 sq10e99m1 10856 3dvds 12117 3dvdsdec 12118 3dvds2dec 12119 |
| Copyright terms: Public domain | W3C validator |