ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9p1e10 GIF version

Theorem 9p1e10 9324
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.)
Assertion
Ref Expression
9p1e10 (9 + 1) = 10

Proof of Theorem 9p1e10
StepHypRef Expression
1 df-dec 9323 . 2 10 = (((9 + 1) · 1) + 0)
2 9nn 9025 . . . . . 6 9 ∈ ℕ
3 1nn 8868 . . . . . 6 1 ∈ ℕ
4 nnaddcl 8877 . . . . . 6 ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ)
52, 3, 4mp2an 423 . . . . 5 (9 + 1) ∈ ℕ
65nncni 8867 . . . 4 (9 + 1) ∈ ℂ
76mulid1i 7901 . . 3 ((9 + 1) · 1) = (9 + 1)
87oveq1i 5852 . 2 (((9 + 1) · 1) + 0) = ((9 + 1) + 0)
96addid1i 8040 . 2 ((9 + 1) + 0) = (9 + 1)
101, 8, 93eqtrri 2191 1 (9 + 1) = 10
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  (class class class)co 5842  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758  cn 8857  9c9 8915  cdc 9322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-1rid 7860  ax-0id 7861  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-5 8919  df-6 8920  df-7 8921  df-8 8922  df-9 8923  df-dec 9323
This theorem is referenced by:  dfdec10  9325  10nn  9337  le9lt10  9348  decsucc  9362  5p5e10  9392  6p4e10  9393  7p3e10  9396  8p2e10  9401  9p2e11  9408  10m1e9  9417  9lt10  9452  sq10e99m1  10626  3dvdsdec  11802  3dvds2dec  11803
  Copyright terms: Public domain W3C validator