Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9p1e10 | GIF version |
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
9p1e10 | ⊢ (9 + 1) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 9323 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9nn 9025 | . . . . . 6 ⊢ 9 ∈ ℕ | |
3 | 1nn 8868 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | nnaddcl 8877 | . . . . . 6 ⊢ ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 423 | . . . . 5 ⊢ (9 + 1) ∈ ℕ |
6 | 5 | nncni 8867 | . . . 4 ⊢ (9 + 1) ∈ ℂ |
7 | 6 | mulid1i 7901 | . . 3 ⊢ ((9 + 1) · 1) = (9 + 1) |
8 | 7 | oveq1i 5852 | . 2 ⊢ (((9 + 1) · 1) + 0) = ((9 + 1) + 0) |
9 | 6 | addid1i 8040 | . 2 ⊢ ((9 + 1) + 0) = (9 + 1) |
10 | 1, 8, 9 | 3eqtrri 2191 | 1 ⊢ (9 + 1) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 (class class class)co 5842 0cc0 7753 1c1 7754 + caddc 7756 · cmul 7758 ℕcn 8857 9c9 8915 ;cdc 9322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-0id 7861 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-5 8919 df-6 8920 df-7 8921 df-8 8922 df-9 8923 df-dec 9323 |
This theorem is referenced by: dfdec10 9325 10nn 9337 le9lt10 9348 decsucc 9362 5p5e10 9392 6p4e10 9393 7p3e10 9396 8p2e10 9401 9p2e11 9408 10m1e9 9417 9lt10 9452 sq10e99m1 10626 3dvdsdec 11802 3dvds2dec 11803 |
Copyright terms: Public domain | W3C validator |