Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9p1e10 | GIF version |
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
9p1e10 | ⊢ (9 + 1) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 9344 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9nn 9046 | . . . . . 6 ⊢ 9 ∈ ℕ | |
3 | 1nn 8889 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | nnaddcl 8898 | . . . . . 6 ⊢ ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 424 | . . . . 5 ⊢ (9 + 1) ∈ ℕ |
6 | 5 | nncni 8888 | . . . 4 ⊢ (9 + 1) ∈ ℂ |
7 | 6 | mulid1i 7922 | . . 3 ⊢ ((9 + 1) · 1) = (9 + 1) |
8 | 7 | oveq1i 5863 | . 2 ⊢ (((9 + 1) · 1) + 0) = ((9 + 1) + 0) |
9 | 6 | addid1i 8061 | . 2 ⊢ ((9 + 1) + 0) = (9 + 1) |
10 | 1, 8, 9 | 3eqtrri 2196 | 1 ⊢ (9 + 1) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 ℕcn 8878 9c9 8936 ;cdc 9343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-0id 7882 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 df-9 8944 df-dec 9344 |
This theorem is referenced by: dfdec10 9346 10nn 9358 le9lt10 9369 decsucc 9383 5p5e10 9413 6p4e10 9414 7p3e10 9417 8p2e10 9422 9p2e11 9429 10m1e9 9438 9lt10 9473 sq10e99m1 10647 3dvdsdec 11824 3dvds2dec 11825 |
Copyright terms: Public domain | W3C validator |