| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 9p1e10 | GIF version | ||
| Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| 9p1e10 | ⊢ (9 + 1) = ;10 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 9477 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9nn 9178 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 3 | 1nn 9020 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 4 | nnaddcl 9029 | . . . . . 6 ⊢ ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ) | |
| 5 | 2, 3, 4 | mp2an 426 | . . . . 5 ⊢ (9 + 1) ∈ ℕ |
| 6 | 5 | nncni 9019 | . . . 4 ⊢ (9 + 1) ∈ ℂ |
| 7 | 6 | mulridi 8047 | . . 3 ⊢ ((9 + 1) · 1) = (9 + 1) |
| 8 | 7 | oveq1i 5935 | . 2 ⊢ (((9 + 1) · 1) + 0) = ((9 + 1) + 0) |
| 9 | 6 | addridi 8187 | . 2 ⊢ ((9 + 1) + 0) = (9 + 1) |
| 10 | 1, 8, 9 | 3eqtrri 2222 | 1 ⊢ (9 + 1) = ;10 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 0cc0 7898 1c1 7899 + caddc 7901 · cmul 7903 ℕcn 9009 9c9 9067 ;cdc 9476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-0id 8006 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-9 9075 df-dec 9477 |
| This theorem is referenced by: dfdec10 9479 10nn 9491 le9lt10 9502 decsucc 9516 5p5e10 9546 6p4e10 9547 7p3e10 9550 8p2e10 9555 9p2e11 9562 10m1e9 9571 9lt10 9606 sq10e99m1 10824 3dvds 12048 3dvdsdec 12049 3dvds2dec 12050 |
| Copyright terms: Public domain | W3C validator |