Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 9p1e10 | GIF version |
Description: 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
9p1e10 | ⊢ (9 + 1) = ;10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 9358 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9nn 9060 | . . . . . 6 ⊢ 9 ∈ ℕ | |
3 | 1nn 8903 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | nnaddcl 8912 | . . . . . 6 ⊢ ((9 ∈ ℕ ∧ 1 ∈ ℕ) → (9 + 1) ∈ ℕ) | |
5 | 2, 3, 4 | mp2an 426 | . . . . 5 ⊢ (9 + 1) ∈ ℕ |
6 | 5 | nncni 8902 | . . . 4 ⊢ (9 + 1) ∈ ℂ |
7 | 6 | mulid1i 7934 | . . 3 ⊢ ((9 + 1) · 1) = (9 + 1) |
8 | 7 | oveq1i 5875 | . 2 ⊢ (((9 + 1) · 1) + 0) = ((9 + 1) + 0) |
9 | 6 | addid1i 8073 | . 2 ⊢ ((9 + 1) + 0) = (9 + 1) |
10 | 1, 8, 9 | 3eqtrri 2201 | 1 ⊢ (9 + 1) = ;10 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 (class class class)co 5865 0cc0 7786 1c1 7787 + caddc 7789 · cmul 7791 ℕcn 8892 9c9 8950 ;cdc 9357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-sep 4116 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-1rid 7893 ax-0id 7894 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-dec 9358 |
This theorem is referenced by: dfdec10 9360 10nn 9372 le9lt10 9383 decsucc 9397 5p5e10 9427 6p4e10 9428 7p3e10 9431 8p2e10 9436 9p2e11 9443 10m1e9 9452 9lt10 9487 sq10e99m1 10661 3dvdsdec 11837 3dvds2dec 11838 |
Copyright terms: Public domain | W3C validator |