ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  demoivreALT GIF version

Theorem demoivreALT 11765
Description: Alternate proof of demoivre 11764. It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
demoivreALT ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))

Proof of Theorem demoivreALT
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5877 . . . . 5 (𝑥 = 0 → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑0))
2 oveq1 5876 . . . . . . 7 (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴))
32fveq2d 5515 . . . . . 6 (𝑥 = 0 → (cos‘(𝑥 · 𝐴)) = (cos‘(0 · 𝐴)))
42fveq2d 5515 . . . . . . 7 (𝑥 = 0 → (sin‘(𝑥 · 𝐴)) = (sin‘(0 · 𝐴)))
54oveq2d 5885 . . . . . 6 (𝑥 = 0 → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘(0 · 𝐴))))
63, 5oveq12d 5887 . . . . 5 (𝑥 = 0 → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))))
71, 6eqeq12d 2192 . . . 4 (𝑥 = 0 → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴))))))
87imbi2d 230 . . 3 (𝑥 = 0 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))))))
9 oveq2 5877 . . . . 5 (𝑥 = 𝑘 → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘))
10 oveq1 5876 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 · 𝐴) = (𝑘 · 𝐴))
1110fveq2d 5515 . . . . . 6 (𝑥 = 𝑘 → (cos‘(𝑥 · 𝐴)) = (cos‘(𝑘 · 𝐴)))
1210fveq2d 5515 . . . . . . 7 (𝑥 = 𝑘 → (sin‘(𝑥 · 𝐴)) = (sin‘(𝑘 · 𝐴)))
1312oveq2d 5885 . . . . . 6 (𝑥 = 𝑘 → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘(𝑘 · 𝐴))))
1411, 13oveq12d 5887 . . . . 5 (𝑥 = 𝑘 → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))))
159, 14eqeq12d 2192 . . . 4 (𝑥 = 𝑘 → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))))
1615imbi2d 230 . . 3 (𝑥 = 𝑘 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))))))
17 oveq2 5877 . . . . 5 (𝑥 = (𝑘 + 1) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)))
18 oveq1 5876 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝑥 · 𝐴) = ((𝑘 + 1) · 𝐴))
1918fveq2d 5515 . . . . . 6 (𝑥 = (𝑘 + 1) → (cos‘(𝑥 · 𝐴)) = (cos‘((𝑘 + 1) · 𝐴)))
2018fveq2d 5515 . . . . . . 7 (𝑥 = (𝑘 + 1) → (sin‘(𝑥 · 𝐴)) = (sin‘((𝑘 + 1) · 𝐴)))
2120oveq2d 5885 . . . . . 6 (𝑥 = (𝑘 + 1) → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘((𝑘 + 1) · 𝐴))))
2219, 21oveq12d 5887 . . . . 5 (𝑥 = (𝑘 + 1) → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
2317, 22eqeq12d 2192 . . . 4 (𝑥 = (𝑘 + 1) → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴))))))
2423imbi2d 230 . . 3 (𝑥 = (𝑘 + 1) → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))))
25 oveq2 5877 . . . . 5 (𝑥 = 𝑁 → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁))
26 oveq1 5876 . . . . . . 7 (𝑥 = 𝑁 → (𝑥 · 𝐴) = (𝑁 · 𝐴))
2726fveq2d 5515 . . . . . 6 (𝑥 = 𝑁 → (cos‘(𝑥 · 𝐴)) = (cos‘(𝑁 · 𝐴)))
2826fveq2d 5515 . . . . . . 7 (𝑥 = 𝑁 → (sin‘(𝑥 · 𝐴)) = (sin‘(𝑁 · 𝐴)))
2928oveq2d 5885 . . . . . 6 (𝑥 = 𝑁 → (i · (sin‘(𝑥 · 𝐴))) = (i · (sin‘(𝑁 · 𝐴))))
3027, 29oveq12d 5887 . . . . 5 (𝑥 = 𝑁 → ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
3125, 30eqeq12d 2192 . . . 4 (𝑥 = 𝑁 → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴)))) ↔ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))))
3231imbi2d 230 . . 3 (𝑥 = 𝑁 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑥) = ((cos‘(𝑥 · 𝐴)) + (i · (sin‘(𝑥 · 𝐴))))) ↔ (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))))
33 coscl 11699 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
34 ax-icn 7897 . . . . . . 7 i ∈ ℂ
35 sincl 11698 . . . . . . 7 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
36 mulcl 7929 . . . . . . 7 ((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → (i · (sin‘𝐴)) ∈ ℂ)
3734, 35, 36sylancr 414 . . . . . 6 (𝐴 ∈ ℂ → (i · (sin‘𝐴)) ∈ ℂ)
38 addcl 7927 . . . . . 6 (((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ) → ((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ)
3933, 37, 38syl2anc 411 . . . . 5 (𝐴 ∈ ℂ → ((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ)
40 exp0 10510 . . . . 5 (((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = 1)
4139, 40syl 14 . . . 4 (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = 1)
42 mul02 8334 . . . . . . . 8 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
4342fveq2d 5515 . . . . . . 7 (𝐴 ∈ ℂ → (cos‘(0 · 𝐴)) = (cos‘0))
44 cos0 11722 . . . . . . 7 (cos‘0) = 1
4543, 44eqtrdi 2226 . . . . . 6 (𝐴 ∈ ℂ → (cos‘(0 · 𝐴)) = 1)
4642fveq2d 5515 . . . . . . . . 9 (𝐴 ∈ ℂ → (sin‘(0 · 𝐴)) = (sin‘0))
47 sin0 11721 . . . . . . . . 9 (sin‘0) = 0
4846, 47eqtrdi 2226 . . . . . . . 8 (𝐴 ∈ ℂ → (sin‘(0 · 𝐴)) = 0)
4948oveq2d 5885 . . . . . . 7 (𝐴 ∈ ℂ → (i · (sin‘(0 · 𝐴))) = (i · 0))
5034mul01i 8338 . . . . . . 7 (i · 0) = 0
5149, 50eqtrdi 2226 . . . . . 6 (𝐴 ∈ ℂ → (i · (sin‘(0 · 𝐴))) = 0)
5245, 51oveq12d 5887 . . . . 5 (𝐴 ∈ ℂ → ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))) = (1 + 0))
53 ax-1cn 7895 . . . . . 6 1 ∈ ℂ
5453addid1i 8089 . . . . 5 (1 + 0) = 1
5552, 54eqtrdi 2226 . . . 4 (𝐴 ∈ ℂ → ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))) = 1)
5641, 55eqtr4d 2213 . . 3 (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑0) = ((cos‘(0 · 𝐴)) + (i · (sin‘(0 · 𝐴)))))
57 expp1 10513 . . . . . . . . 9 ((((cos‘𝐴) + (i · (sin‘𝐴))) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
5839, 57sylan 283 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
5958ancoms 268 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
6059adantr 276 . . . . . 6 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
61 oveq1 5876 . . . . . . 7 ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
6261adantl 277 . . . . . 6 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))))
63 nn0cn 9175 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
64 mulcl 7929 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑘 · 𝐴) ∈ ℂ)
6563, 64sylan 283 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (𝑘 · 𝐴) ∈ ℂ)
66 sinadd 11728 . . . . . . . . . . . 12 (((𝑘 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (sin‘((𝑘 · 𝐴) + 𝐴)) = (((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
6765, 66sylancom 420 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘((𝑘 · 𝐴) + 𝐴)) = (((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
6833adantl 277 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
69 sincl 11698 . . . . . . . . . . . . . 14 ((𝑘 · 𝐴) ∈ ℂ → (sin‘(𝑘 · 𝐴)) ∈ ℂ)
7065, 69syl 14 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘(𝑘 · 𝐴)) ∈ ℂ)
71 mulcom 7931 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) = ((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)))
7268, 70, 71syl2anc 411 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) = ((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)))
7372oveq1d 5884 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((sin‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
74 mulcl 7929 . . . . . . . . . . . . 13 (((cos‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
7568, 70, 74syl2anc 411 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
76 coscl 11699 . . . . . . . . . . . . . 14 ((𝑘 · 𝐴) ∈ ℂ → (cos‘(𝑘 · 𝐴)) ∈ ℂ)
7765, 76syl 14 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘(𝑘 · 𝐴)) ∈ ℂ)
7835adantl 277 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
79 mulcl 7929 . . . . . . . . . . . . 13 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ)
8077, 78, 79syl2anc 411 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ)
81 addcom 8084 . . . . . . . . . . . 12 ((((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ ∧ ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ) → (((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
8275, 80, 81syl2anc 411 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) + ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
8367, 73, 823eqtr2d 2216 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
8483oveq2d 5885 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (sin‘((𝑘 · 𝐴) + 𝐴))) = (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
8584oveq2d 5885 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (sin‘((𝑘 · 𝐴) + 𝐴)))) = ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
86 adddir 7939 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + (1 · 𝐴)))
87 mulid2 7946 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
8887oveq2d 5885 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
89883ad2ant3 1020 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 · 𝐴) + (1 · 𝐴)) = ((𝑘 · 𝐴) + 𝐴))
9086, 89eqtrd 2210 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
9163, 90syl3an1 1271 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
9253, 91mp3an2 1325 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((𝑘 + 1) · 𝐴) = ((𝑘 · 𝐴) + 𝐴))
9392fveq2d 5515 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘((𝑘 + 1) · 𝐴)) = (cos‘((𝑘 · 𝐴) + 𝐴)))
9492fveq2d 5515 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (sin‘((𝑘 + 1) · 𝐴)) = (sin‘((𝑘 · 𝐴) + 𝐴)))
9594oveq2d 5885 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (sin‘((𝑘 + 1) · 𝐴))) = (i · (sin‘((𝑘 · 𝐴) + 𝐴))))
9693, 95oveq12d 5887 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))) = ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (sin‘((𝑘 · 𝐴) + 𝐴)))))
97 mulcl 7929 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
9834, 97mpan 424 . . . . . . . . . . . . 13 ((sin‘(𝑘 · 𝐴)) ∈ ℂ → (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
9965, 69, 983syl 17 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
10033, 37jca 306 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ))
101100adantl 277 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ))
102 muladd 8331 . . . . . . . . . . . 12 ((((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (i · (sin‘(𝑘 · 𝐴))) ∈ ℂ) ∧ ((cos‘𝐴) ∈ ℂ ∧ (i · (sin‘𝐴)) ∈ ℂ)) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))))
10377, 99, 101, 102syl21anc 1237 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))))
10478, 34jctil 312 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ))
10570, 34jctil 312 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ))
106 mul4 8079 . . . . . . . . . . . . . . 15 (((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) ∧ (i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ)) → ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴)))) = ((i · i) · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
107 ixi 8530 . . . . . . . . . . . . . . . 16 (i · i) = -1
108107oveq1i 5879 . . . . . . . . . . . . . . 15 ((i · i) · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
109106, 108eqtrdi 2226 . . . . . . . . . . . . . 14 (((i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) ∧ (i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ)) → ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴)))) = (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
110104, 105, 109syl2anc 411 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴)))) = (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
111110oveq2d 5885 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))))
112111oveq1d 5884 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + ((i · (sin‘𝐴)) · (i · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))))
113 mul12 8076 . . . . . . . . . . . . . . . 16 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ i ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) = (i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
11434, 113mp3an2 1325 . . . . . . . . . . . . . . 15 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) = (i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
11577, 78, 114syl2anc 411 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) = (i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))))
116 mul12 8076 . . . . . . . . . . . . . . . 16 (((cos‘𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))) = (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
11734, 116mp3an2 1325 . . . . . . . . . . . . . . 15 (((cos‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))) = (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
11868, 70, 117syl2anc 411 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))) = (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))
119115, 118oveq12d 5887 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
120 adddi 7934 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ ∧ ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ) → (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
12134, 120mp3an1 1324 . . . . . . . . . . . . . 14 ((((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) ∈ ℂ ∧ ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ) → (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
12280, 75, 121syl2anc 411 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))) = ((i · ((cos‘(𝑘 · 𝐴)) · (sin‘𝐴))) + (i · ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
123119, 122eqtr4d 2213 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴))))) = (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴))))))
124123oveq2d 5885 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (((cos‘(𝑘 · 𝐴)) · (i · (sin‘𝐴))) + ((cos‘𝐴) · (i · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
125103, 112, 1243eqtrd 2214 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
126 mulcl 7929 . . . . . . . . . . . . . 14 (((sin‘𝐴) ∈ ℂ ∧ (sin‘(𝑘 · 𝐴)) ∈ ℂ) → ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
12778, 70, 126syl2anc 411 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ)
128 mulm1 8347 . . . . . . . . . . . . 13 (((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ → (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = -((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
129127, 128syl 14 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = -((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
130129oveq2d 5885 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
131130oveq1d 5884 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + (-1 · ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
132 mulcl 7929 . . . . . . . . . . . . 13 (((cos‘(𝑘 · 𝐴)) ∈ ℂ ∧ (cos‘𝐴) ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) ∈ ℂ)
13377, 68, 132syl2anc 411 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) ∈ ℂ)
134 negsub 8195 . . . . . . . . . . . 12 ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) ∈ ℂ ∧ ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))) ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
135133, 127, 134syl2anc 411 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
136135oveq1d 5884 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) + -((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
137125, 131, 1363eqtrd 2214 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
138 cosadd 11729 . . . . . . . . . . . 12 (((𝑘 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (cos‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴))))
13965, 138sylancom 420 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴))))
140 mulcom 7931 . . . . . . . . . . . . 13 (((sin‘(𝑘 · 𝐴)) ∈ ℂ ∧ (sin‘𝐴) ∈ ℂ) → ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴)) = ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
14170, 78, 140syl2anc 411 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴)) = ((sin‘𝐴) · (sin‘(𝑘 · 𝐴))))
142141oveq2d 5885 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘(𝑘 · 𝐴)) · (sin‘𝐴))) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
143139, 142eqtrd 2210 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (cos‘((𝑘 · 𝐴) + 𝐴)) = (((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))))
144143oveq1d 5884 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))) = ((((cos‘(𝑘 · 𝐴)) · (cos‘𝐴)) − ((sin‘𝐴) · (sin‘(𝑘 · 𝐴)))) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
145137, 144eqtr4d 2213 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((cos‘((𝑘 · 𝐴) + 𝐴)) + (i · (((cos‘(𝑘 · 𝐴)) · (sin‘𝐴)) + ((cos‘𝐴) · (sin‘(𝑘 · 𝐴)))))))
14685, 96, 1453eqtr4rd 2221 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴 ∈ ℂ) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
147146adantr 276 . . . . . 6 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) · ((cos‘𝐴) + (i · (sin‘𝐴)))) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
14860, 62, 1473eqtrd 2214 . . . . 5 (((𝑘 ∈ ℕ0𝐴 ∈ ℂ) ∧ (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))
149148exp31 364 . . . 4 (𝑘 ∈ ℕ0 → (𝐴 ∈ ℂ → ((((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴)))) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))))
150149a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑘) = ((cos‘(𝑘 · 𝐴)) + (i · (sin‘(𝑘 · 𝐴))))) → (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑(𝑘 + 1)) = ((cos‘((𝑘 + 1) · 𝐴)) + (i · (sin‘((𝑘 + 1) · 𝐴)))))))
1518, 16, 24, 32, 56, 150nn0ind 9356 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ ℂ → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴))))))
152151impcom 125 1 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((cos‘𝐴) + (i · (sin‘𝐴)))↑𝑁) = ((cos‘(𝑁 · 𝐴)) + (i · (sin‘(𝑁 · 𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803  ici 7804   + caddc 7805   · cmul 7807  cmin 8118  -cneg 8119  0cn0 9165  cexp 10505  sincsin 11636  cosccos 11637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator