| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidi | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 8293 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-addcom 8107 ax-i2m1 8112 ax-0id 8115 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: ine0 8548 inelr 8739 muleqadd 8823 0p1e1 9232 iap0 9342 num0h 9597 nummul1c 9634 decrmac 9643 decmul1 9649 fz0tp 10326 fz0to4untppr 10328 fzo0to3tp 10433 cats1fvn 11304 rei 11418 imi 11419 resqrexlemover 11529 ef01bndlem 12275 5ndvds3 12453 dec5dvds2 12944 2exp11 12967 2exp16 12968 efhalfpi 15481 sinq34lt0t 15513 ex-fac 16116 |
| Copyright terms: Public domain | W3C validator |