| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidi | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 8184 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-1cn 7991 ax-icn 7993 ax-addcl 7994 ax-mulcl 7996 ax-addcom 7998 ax-i2m1 8003 ax-0id 8006 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: ine0 8439 inelr 8630 muleqadd 8714 0p1e1 9123 iap0 9233 num0h 9487 nummul1c 9524 decrmac 9533 decmul1 9539 fz0tp 10216 fz0to4untppr 10218 fzo0to3tp 10314 rei 11083 imi 11084 resqrexlemover 11194 ef01bndlem 11940 5ndvds3 12118 dec5dvds2 12609 2exp11 12632 2exp16 12633 efhalfpi 15143 sinq34lt0t 15175 ex-fac 15482 |
| Copyright terms: Public domain | W3C validator |