| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlidi | GIF version | ||
| Description: 0 is a left identity for addition. (Contributed by NM, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addlidi | ⊢ (0 + 𝐴) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addlid 8253 | . 2 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (0 + 𝐴) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 0cc0 7967 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-4 1536 ax-17 1552 ax-ial 1560 ax-ext 2191 ax-1cn 8060 ax-icn 8062 ax-addcl 8063 ax-mulcl 8065 ax-addcom 8067 ax-i2m1 8072 ax-0id 8075 |
| This theorem depends on definitions: df-bi 117 df-cleq 2202 df-clel 2205 |
| This theorem is referenced by: ine0 8508 inelr 8699 muleqadd 8783 0p1e1 9192 iap0 9302 num0h 9557 nummul1c 9594 decrmac 9603 decmul1 9609 fz0tp 10286 fz0to4untppr 10288 fzo0to3tp 10392 cats1fvn 11262 rei 11376 imi 11377 resqrexlemover 11487 ef01bndlem 12233 5ndvds3 12411 dec5dvds2 12902 2exp11 12925 2exp16 12926 efhalfpi 15438 sinq34lt0t 15470 ex-fac 16002 |
| Copyright terms: Public domain | W3C validator |