Proof of Theorem dffo4
Step | Hyp | Ref
| Expression |
1 | | dffo2 5424 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵)) |
2 | | simpl 108 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴⟶𝐵) |
3 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
4 | 3 | elrn 4854 |
. . . . . . . . 9
⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦) |
5 | | eleq2 2234 |
. . . . . . . . 9
⊢ (ran
𝐹 = 𝐵 → (𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ 𝐵)) |
6 | 4, 5 | bitr3id 193 |
. . . . . . . 8
⊢ (ran
𝐹 = 𝐵 → (∃𝑥 𝑥𝐹𝑦 ↔ 𝑦 ∈ 𝐵)) |
7 | 6 | biimpar 295 |
. . . . . . 7
⊢ ((ran
𝐹 = 𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 𝑥𝐹𝑦) |
8 | 7 | adantll 473 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 𝑥𝐹𝑦) |
9 | | ffn 5347 |
. . . . . . . . . . 11
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
10 | | fnbr 5300 |
. . . . . . . . . . . 12
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) |
11 | 10 | ex 114 |
. . . . . . . . . . 11
⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
12 | 9, 11 | syl 14 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
13 | 12 | ancrd 324 |
. . . . . . . . 9
⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
14 | 13 | eximdv 1873 |
. . . . . . . 8
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
15 | | df-rex 2454 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) |
16 | 14, 15 | syl6ibr 161 |
. . . . . . 7
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
17 | 16 | ad2antrr 485 |
. . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦 ∈ 𝐵) → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
18 | 8, 17 | mpd 13 |
. . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
19 | 18 | ralrimiva 2543 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) |
20 | 2, 19 | jca 304 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ ran 𝐹 = 𝐵) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
21 | 1, 20 | sylbi 120 |
. 2
⊢ (𝐹:𝐴–onto→𝐵 → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
22 | | fnbrfvb 5537 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝑦 ↔ 𝑥𝐹𝑦)) |
23 | 22 | biimprd 157 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝑦 → (𝐹‘𝑥) = 𝑦)) |
24 | | eqcom 2172 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) |
25 | 23, 24 | syl6ib 160 |
. . . . . . 7
⊢ ((𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝑦 → 𝑦 = (𝐹‘𝑥))) |
26 | 9, 25 | sylan 281 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥𝐹𝑦 → 𝑦 = (𝐹‘𝑥))) |
27 | 26 | reximdva 2572 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
28 | 27 | ralimdv 2538 |
. . . 4
⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
29 | 28 | imdistani 443 |
. . 3
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
30 | | dffo3 5643 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) |
31 | 29, 30 | sylibr 133 |
. 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) → 𝐹:𝐴–onto→𝐵) |
32 | 21, 31 | impbii 125 |
1
⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |