ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo4 GIF version

Theorem dffo4 5644
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo4 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo4
StepHypRef Expression
1 dffo2 5424 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
2 simpl 108 . . . 4 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴𝐵)
3 vex 2733 . . . . . . . . . 10 𝑦 ∈ V
43elrn 4854 . . . . . . . . 9 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥 𝑥𝐹𝑦)
5 eleq2 2234 . . . . . . . . 9 (ran 𝐹 = 𝐵 → (𝑦 ∈ ran 𝐹𝑦𝐵))
64, 5bitr3id 193 . . . . . . . 8 (ran 𝐹 = 𝐵 → (∃𝑥 𝑥𝐹𝑦𝑦𝐵))
76biimpar 295 . . . . . . 7 ((ran 𝐹 = 𝐵𝑦𝐵) → ∃𝑥 𝑥𝐹𝑦)
87adantll 473 . . . . . 6 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → ∃𝑥 𝑥𝐹𝑦)
9 ffn 5347 . . . . . . . . . . 11 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
10 fnbr 5300 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1110ex 114 . . . . . . . . . . 11 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
129, 11syl 14 . . . . . . . . . 10 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦𝑥𝐴))
1312ancrd 324 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦 → (𝑥𝐴𝑥𝐹𝑦)))
1413eximdv 1873 . . . . . . . 8 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥𝐴𝑥𝐹𝑦)))
15 df-rex 2454 . . . . . . . 8 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
1614, 15syl6ibr 161 . . . . . . 7 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
1716ad2antrr 485 . . . . . 6 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
188, 17mpd 13 . . . . 5 (((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑥𝐹𝑦)
1918ralrimiva 2543 . . . 4 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦)
202, 19jca 304 . . 3 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
211, 20sylbi 120 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
22 fnbrfvb 5537 . . . . . . . . 9 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
2322biimprd 157 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥𝐹𝑦 → (𝐹𝑥) = 𝑦))
24 eqcom 2172 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2523, 24syl6ib 160 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑥𝐹𝑦𝑦 = (𝐹𝑥)))
269, 25sylan 281 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → (𝑥𝐹𝑦𝑦 = (𝐹𝑥)))
2726reximdva 2572 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥𝐴 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑦 = (𝐹𝑥)))
2827ralimdv 2538 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
2928imdistani 443 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
30 dffo3 5643 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
3129, 30sylibr 133 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → 𝐹:𝐴onto𝐵)
3221, 31impbii 125 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wral 2448  wrex 2449   class class class wbr 3989  ran crn 4612   Fn wfn 5193  wf 5194  ontowfo 5196  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fo 5204  df-fv 5206
This theorem is referenced by:  dffo5  5645
  Copyright terms: Public domain W3C validator