ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeq GIF version

Theorem qredeq 12493
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 9397 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
21adantr 276 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3 nncn 9064 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 277 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 nnap0 9085 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 # 0)
65adantl 277 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
72, 4, 6divclapd 8883 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
873adant3 1020 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 / 𝑁) ∈ ℂ)
98adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 / 𝑁) ∈ ℂ)
10 zcn 9397 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∈ ℂ)
1110adantr 276 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑃 ∈ ℂ)
12 nncn 9064 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 ∈ ℂ)
1312adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 ∈ ℂ)
14 nnap0 9085 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 # 0)
1514adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 # 0)
1611, 13, 15divclapd 8883 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℂ)
17163adant3 1020 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 / 𝑄) ∈ ℂ)
1817adantl 277 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑃 / 𝑄) ∈ ℂ)
1933ad2ant2 1022 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℂ)
2019adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℂ)
2153ad2ant2 1022 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 # 0)
2221adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 # 0)
239, 18, 20, 22mulcanapd 8754 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 / 𝑁) = (𝑃 / 𝑄)))
242, 4, 6divcanap2d 8885 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
25243adant3 1020 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2625adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2726eqeq1d 2215 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2823, 27bitr3d 190 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2913ad2ant1 1021 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℂ)
3029adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℂ)
31 mulcl 8072 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
3219, 17, 31syl2an 289 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
33123ad2ant2 1022 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℂ)
3433adantl 277 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℂ)
35143ad2ant2 1022 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 # 0)
3635adantl 277 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 # 0)
3730, 32, 34, 36mulcanap2d 8755 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
3820, 18, 34mulassd 8116 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · ((𝑃 / 𝑄) · 𝑄)))
3911, 13, 15divcanap1d 8884 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
40393adant3 1020 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4140adantl 277 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4241oveq2d 5973 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · ((𝑃 / 𝑄) · 𝑄)) = (𝑁 · 𝑃))
4338, 42eqtrd 2239 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · 𝑃))
4443eqeq2d 2218 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4537, 44bitr3d 190 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4628, 45bitrd 188 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
47 nnz 9411 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
48473ad2ant2 1022 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
49 simp2 1001 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℕ)
5048, 49anim12i 338 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5150adantr 276 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5248adantr 276 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℤ)
53 simpl1 1003 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℤ)
54 nnz 9411 . . . . . . . . . . . 12 (𝑄 ∈ ℕ → 𝑄 ∈ ℤ)
55543ad2ant2 1022 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℤ)
5655adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℤ)
5752, 53, 563jca 1180 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
5857adantr 276 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
59 simp1 1000 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℤ)
60 dvdsmul1 12199 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑃))
6148, 59, 60syl2an 289 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∥ (𝑁 · 𝑃))
6261adantr 276 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑁 · 𝑃))
63 simpr 110 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑁 · 𝑃))
6462, 63breqtrrd 4079 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑀 · 𝑄))
65 gcdcom 12369 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6647, 65sylan 283 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6766ancoms 268 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
68673adant3 1020 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
69 simp3 1002 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
7068, 69eqtrd 2239 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
7170ad2antrr 488 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 gcd 𝑀) = 1)
7264, 71jca 306 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1))
73 coprmdvds 12489 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1) → 𝑁𝑄))
7458, 72, 73sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
75 dvdsle 12230 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑁𝑄𝑁𝑄))
7651, 74, 75sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
77 simp2 1001 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
7855, 77anim12i 338 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
7978ancoms 268 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
8079adantr 276 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
81 simpr1 1006 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℤ)
8256, 81, 523jca 1180 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8382adantr 276 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 simp1 1000 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
85 dvdsmul2 12200 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑀 · 𝑄))
8684, 55, 85syl2an 289 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∥ (𝑀 · 𝑄))
8786adantr 276 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑀 · 𝑄))
88103ad2ant1 1021 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℂ)
89 mulcom 8074 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9019, 88, 89syl2an 289 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9190adantr 276 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9263, 91eqtrd 2239 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑃 · 𝑁))
9387, 92breqtrd 4077 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑃 · 𝑁))
94 gcdcom 12369 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9554, 94sylan 283 . . . . . . . . . . . . 13 ((𝑄 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9695ancoms 268 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
97963adant3 1020 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
98 simp3 1002 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 gcd 𝑄) = 1)
9997, 98eqtrd 2239 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = 1)
10099ad2antlr 489 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 gcd 𝑃) = 1)
10193, 100jca 306 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1))
102 coprmdvds 12489 . . . . . . . 8 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑁))
10383, 101, 102sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
104 dvdsle 12230 . . . . . . 7 ((𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑄𝑁𝑄𝑁))
10580, 103, 104sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
106 nnre 9063 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1071063ad2ant2 1022 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℝ)
108107ad2antrr 488 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∈ ℝ)
109 nnre 9063 . . . . . . . . 9 (𝑄 ∈ ℕ → 𝑄 ∈ ℝ)
1101093ad2ant2 1022 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℝ)
111110ad2antlr 489 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∈ ℝ)
112108, 111letri3d 8208 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 ↔ (𝑁𝑄𝑄𝑁)))
11376, 105, 112mpbir2and 947 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 = 𝑄)
114 oveq2 5965 . . . . . . . . . 10 (𝑁 = 𝑄 → (𝑀 · 𝑁) = (𝑀 · 𝑄))
115114eqeq1d 2215 . . . . . . . . 9 (𝑁 = 𝑄 → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
116115anbi2d 464 . . . . . . . 8 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃))))
117 mulcom 8074 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1181, 3, 117syl2an 289 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1191183adant3 1020 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
120119adantr 276 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
121120eqeq1d 2215 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑁 · 𝑀) = (𝑁 · 𝑃)))
12288adantl 277 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℂ)
12330, 122, 20, 22mulcanapd 8754 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · 𝑀) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
124121, 123bitrd 188 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
125124biimpa 296 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) → 𝑀 = 𝑃)
126116, 125biimtrrdi 164 . . . . . . 7 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑀 = 𝑃))
127126com12 30 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄𝑀 = 𝑃))
128127ancrd 326 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 → (𝑀 = 𝑃𝑁 = 𝑄)))
129113, 128mpd 13 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 = 𝑃𝑁 = 𝑄))
130129ex 115 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = (𝑁 · 𝑃) → (𝑀 = 𝑃𝑁 = 𝑄)))
13146, 130sylbid 150 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) → (𝑀 = 𝑃𝑁 = 𝑄)))
1321313impia 1203 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177   class class class wbr 4051  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945  1c1 7946   · cmul 7950  cle 8128   # cap 8674   / cdiv 8765  cn 9056  cz 9392  cdvds 12173   gcd cgcd 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350
This theorem is referenced by:  qredeu  12494
  Copyright terms: Public domain W3C validator