ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeq GIF version

Theorem qredeq 11704
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 9027 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
21adantr 274 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3 nncn 8696 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 275 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 nnap0 8717 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 # 0)
65adantl 275 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
72, 4, 6divclapd 8518 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
873adant3 986 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 / 𝑁) ∈ ℂ)
98adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 / 𝑁) ∈ ℂ)
10 zcn 9027 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∈ ℂ)
1110adantr 274 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑃 ∈ ℂ)
12 nncn 8696 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 ∈ ℂ)
1312adantl 275 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 ∈ ℂ)
14 nnap0 8717 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 # 0)
1514adantl 275 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 # 0)
1611, 13, 15divclapd 8518 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℂ)
17163adant3 986 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 / 𝑄) ∈ ℂ)
1817adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑃 / 𝑄) ∈ ℂ)
1933ad2ant2 988 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℂ)
2019adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℂ)
2153ad2ant2 988 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 # 0)
2221adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 # 0)
239, 18, 20, 22mulcanapd 8390 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 / 𝑁) = (𝑃 / 𝑄)))
242, 4, 6divcanap2d 8520 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
25243adant3 986 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2625adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2726eqeq1d 2126 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2823, 27bitr3d 189 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2913ad2ant1 987 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℂ)
3029adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℂ)
31 mulcl 7715 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
3219, 17, 31syl2an 287 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
33123ad2ant2 988 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℂ)
3433adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℂ)
35143ad2ant2 988 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 # 0)
3635adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 # 0)
3730, 32, 34, 36mulcanap2d 8391 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
3820, 18, 34mulassd 7757 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · ((𝑃 / 𝑄) · 𝑄)))
3911, 13, 15divcanap1d 8519 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
40393adant3 986 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4140adantl 275 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4241oveq2d 5758 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · ((𝑃 / 𝑄) · 𝑄)) = (𝑁 · 𝑃))
4338, 42eqtrd 2150 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · 𝑃))
4443eqeq2d 2129 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4537, 44bitr3d 189 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4628, 45bitrd 187 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
47 nnz 9041 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
48473ad2ant2 988 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
49 simp2 967 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℕ)
5048, 49anim12i 336 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5150adantr 274 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5248adantr 274 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℤ)
53 simpl1 969 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℤ)
54 nnz 9041 . . . . . . . . . . . 12 (𝑄 ∈ ℕ → 𝑄 ∈ ℤ)
55543ad2ant2 988 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℤ)
5655adantl 275 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℤ)
5752, 53, 563jca 1146 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
5857adantr 274 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
59 simp1 966 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℤ)
60 dvdsmul1 11442 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑃))
6148, 59, 60syl2an 287 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∥ (𝑁 · 𝑃))
6261adantr 274 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑁 · 𝑃))
63 simpr 109 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑁 · 𝑃))
6462, 63breqtrrd 3926 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑀 · 𝑄))
65 gcdcom 11589 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6647, 65sylan 281 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6766ancoms 266 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
68673adant3 986 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
69 simp3 968 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
7068, 69eqtrd 2150 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
7170ad2antrr 479 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 gcd 𝑀) = 1)
7264, 71jca 304 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1))
73 coprmdvds 11700 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1) → 𝑁𝑄))
7458, 72, 73sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
75 dvdsle 11469 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑁𝑄𝑁𝑄))
7651, 74, 75sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
77 simp2 967 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
7855, 77anim12i 336 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
7978ancoms 266 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
8079adantr 274 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
81 simpr1 972 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℤ)
8256, 81, 523jca 1146 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8382adantr 274 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 simp1 966 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
85 dvdsmul2 11443 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑀 · 𝑄))
8684, 55, 85syl2an 287 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∥ (𝑀 · 𝑄))
8786adantr 274 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑀 · 𝑄))
88103ad2ant1 987 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℂ)
89 mulcom 7717 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9019, 88, 89syl2an 287 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9190adantr 274 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9263, 91eqtrd 2150 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑃 · 𝑁))
9387, 92breqtrd 3924 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑃 · 𝑁))
94 gcdcom 11589 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9554, 94sylan 281 . . . . . . . . . . . . 13 ((𝑄 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9695ancoms 266 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
97963adant3 986 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
98 simp3 968 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 gcd 𝑄) = 1)
9997, 98eqtrd 2150 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = 1)
10099ad2antlr 480 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 gcd 𝑃) = 1)
10193, 100jca 304 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1))
102 coprmdvds 11700 . . . . . . . 8 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑁))
10383, 101, 102sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
104 dvdsle 11469 . . . . . . 7 ((𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑄𝑁𝑄𝑁))
10580, 103, 104sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
106 nnre 8695 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1071063ad2ant2 988 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℝ)
108107ad2antrr 479 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∈ ℝ)
109 nnre 8695 . . . . . . . . 9 (𝑄 ∈ ℕ → 𝑄 ∈ ℝ)
1101093ad2ant2 988 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℝ)
111110ad2antlr 480 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∈ ℝ)
112108, 111letri3d 7847 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 ↔ (𝑁𝑄𝑄𝑁)))
11376, 105, 112mpbir2and 913 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 = 𝑄)
114 oveq2 5750 . . . . . . . . . 10 (𝑁 = 𝑄 → (𝑀 · 𝑁) = (𝑀 · 𝑄))
115114eqeq1d 2126 . . . . . . . . 9 (𝑁 = 𝑄 → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
116115anbi2d 459 . . . . . . . 8 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃))))
117 mulcom 7717 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1181, 3, 117syl2an 287 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1191183adant3 986 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
120119adantr 274 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
121120eqeq1d 2126 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑁 · 𝑀) = (𝑁 · 𝑃)))
12288adantl 275 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℂ)
12330, 122, 20, 22mulcanapd 8390 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · 𝑀) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
124121, 123bitrd 187 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
125124biimpa 294 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) → 𝑀 = 𝑃)
126116, 125syl6bir 163 . . . . . . 7 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑀 = 𝑃))
127126com12 30 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄𝑀 = 𝑃))
128127ancrd 324 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 → (𝑀 = 𝑃𝑁 = 𝑄)))
129113, 128mpd 13 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 = 𝑃𝑁 = 𝑄))
130129ex 114 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = (𝑁 · 𝑃) → (𝑀 = 𝑃𝑁 = 𝑄)))
13146, 130sylbid 149 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) → (𝑀 = 𝑃𝑁 = 𝑄)))
1321313impia 1163 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 947   = wceq 1316  wcel 1465   class class class wbr 3899  (class class class)co 5742  cc 7586  cr 7587  0cc0 7588  1c1 7589   · cmul 7593  cle 7769   # cap 8311   / cdiv 8400  cn 8688  cz 9022  cdvds 11420   gcd cgcd 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-sup 6839  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-q 9380  df-rp 9410  df-fz 9759  df-fzo 9888  df-fl 10011  df-mod 10064  df-seqfrec 10187  df-exp 10261  df-cj 10582  df-re 10583  df-im 10584  df-rsqrt 10738  df-abs 10739  df-dvds 11421  df-gcd 11563
This theorem is referenced by:  qredeu  11705
  Copyright terms: Public domain W3C validator