Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeq GIF version

Theorem qredeq 11945
 Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 9151 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
21adantr 274 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3 nncn 8820 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 275 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 nnap0 8841 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 # 0)
65adantl 275 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
72, 4, 6divclapd 8642 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
873adant3 1002 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 / 𝑁) ∈ ℂ)
98adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 / 𝑁) ∈ ℂ)
10 zcn 9151 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∈ ℂ)
1110adantr 274 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑃 ∈ ℂ)
12 nncn 8820 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 ∈ ℂ)
1312adantl 275 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 ∈ ℂ)
14 nnap0 8841 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 # 0)
1514adantl 275 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 # 0)
1611, 13, 15divclapd 8642 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℂ)
17163adant3 1002 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 / 𝑄) ∈ ℂ)
1817adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑃 / 𝑄) ∈ ℂ)
1933ad2ant2 1004 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℂ)
2019adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℂ)
2153ad2ant2 1004 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 # 0)
2221adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 # 0)
239, 18, 20, 22mulcanapd 8514 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 / 𝑁) = (𝑃 / 𝑄)))
242, 4, 6divcanap2d 8644 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
25243adant3 1002 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2625adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2726eqeq1d 2163 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2823, 27bitr3d 189 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2913ad2ant1 1003 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℂ)
3029adantr 274 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℂ)
31 mulcl 7838 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
3219, 17, 31syl2an 287 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
33123ad2ant2 1004 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℂ)
3433adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℂ)
35143ad2ant2 1004 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 # 0)
3635adantl 275 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 # 0)
3730, 32, 34, 36mulcanap2d 8515 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
3820, 18, 34mulassd 7880 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · ((𝑃 / 𝑄) · 𝑄)))
3911, 13, 15divcanap1d 8643 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
40393adant3 1002 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4140adantl 275 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4241oveq2d 5830 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · ((𝑃 / 𝑄) · 𝑄)) = (𝑁 · 𝑃))
4338, 42eqtrd 2187 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · 𝑃))
4443eqeq2d 2166 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4537, 44bitr3d 189 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4628, 45bitrd 187 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
47 nnz 9165 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
48473ad2ant2 1004 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
49 simp2 983 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℕ)
5048, 49anim12i 336 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5150adantr 274 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5248adantr 274 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℤ)
53 simpl1 985 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℤ)
54 nnz 9165 . . . . . . . . . . . 12 (𝑄 ∈ ℕ → 𝑄 ∈ ℤ)
55543ad2ant2 1004 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℤ)
5655adantl 275 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℤ)
5752, 53, 563jca 1162 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
5857adantr 274 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
59 simp1 982 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℤ)
60 dvdsmul1 11682 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑃))
6148, 59, 60syl2an 287 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∥ (𝑁 · 𝑃))
6261adantr 274 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑁 · 𝑃))
63 simpr 109 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑁 · 𝑃))
6462, 63breqtrrd 3988 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑀 · 𝑄))
65 gcdcom 11829 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6647, 65sylan 281 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6766ancoms 266 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
68673adant3 1002 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
69 simp3 984 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
7068, 69eqtrd 2187 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
7170ad2antrr 480 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 gcd 𝑀) = 1)
7264, 71jca 304 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1))
73 coprmdvds 11941 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1) → 𝑁𝑄))
7458, 72, 73sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
75 dvdsle 11709 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑁𝑄𝑁𝑄))
7651, 74, 75sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
77 simp2 983 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
7855, 77anim12i 336 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
7978ancoms 266 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
8079adantr 274 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
81 simpr1 988 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℤ)
8256, 81, 523jca 1162 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8382adantr 274 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 simp1 982 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
85 dvdsmul2 11683 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑀 · 𝑄))
8684, 55, 85syl2an 287 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∥ (𝑀 · 𝑄))
8786adantr 274 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑀 · 𝑄))
88103ad2ant1 1003 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℂ)
89 mulcom 7840 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9019, 88, 89syl2an 287 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9190adantr 274 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9263, 91eqtrd 2187 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑃 · 𝑁))
9387, 92breqtrd 3986 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑃 · 𝑁))
94 gcdcom 11829 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9554, 94sylan 281 . . . . . . . . . . . . 13 ((𝑄 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9695ancoms 266 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
97963adant3 1002 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
98 simp3 984 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 gcd 𝑄) = 1)
9997, 98eqtrd 2187 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = 1)
10099ad2antlr 481 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 gcd 𝑃) = 1)
10193, 100jca 304 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1))
102 coprmdvds 11941 . . . . . . . 8 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑁))
10383, 101, 102sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
104 dvdsle 11709 . . . . . . 7 ((𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑄𝑁𝑄𝑁))
10580, 103, 104sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
106 nnre 8819 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1071063ad2ant2 1004 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℝ)
108107ad2antrr 480 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∈ ℝ)
109 nnre 8819 . . . . . . . . 9 (𝑄 ∈ ℕ → 𝑄 ∈ ℝ)
1101093ad2ant2 1004 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℝ)
111110ad2antlr 481 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∈ ℝ)
112108, 111letri3d 7971 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 ↔ (𝑁𝑄𝑄𝑁)))
11376, 105, 112mpbir2and 929 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 = 𝑄)
114 oveq2 5822 . . . . . . . . . 10 (𝑁 = 𝑄 → (𝑀 · 𝑁) = (𝑀 · 𝑄))
115114eqeq1d 2163 . . . . . . . . 9 (𝑁 = 𝑄 → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
116115anbi2d 460 . . . . . . . 8 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃))))
117 mulcom 7840 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1181, 3, 117syl2an 287 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1191183adant3 1002 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
120119adantr 274 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
121120eqeq1d 2163 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑁 · 𝑀) = (𝑁 · 𝑃)))
12288adantl 275 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℂ)
12330, 122, 20, 22mulcanapd 8514 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · 𝑀) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
124121, 123bitrd 187 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
125124biimpa 294 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) → 𝑀 = 𝑃)
126116, 125syl6bir 163 . . . . . . 7 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑀 = 𝑃))
127126com12 30 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄𝑀 = 𝑃))
128127ancrd 324 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 → (𝑀 = 𝑃𝑁 = 𝑄)))
129113, 128mpd 13 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 = 𝑃𝑁 = 𝑄))
130129ex 114 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = (𝑁 · 𝑃) → (𝑀 = 𝑃𝑁 = 𝑄)))
13146, 130sylbid 149 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) → (𝑀 = 𝑃𝑁 = 𝑄)))
1321313impia 1179 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 2125   class class class wbr 3961  (class class class)co 5814  ℂcc 7709  ℝcr 7710  0cc0 7711  1c1 7712   · cmul 7716   ≤ cle 7892   # cap 8435   / cdiv 8524  ℕcn 8812  ℤcz 9146   ∥ cdvds 11660   gcd cgcd 11802 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-sup 6916  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fzo 10020  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-dvds 11661  df-gcd 11803 This theorem is referenced by:  qredeu  11946
 Copyright terms: Public domain W3C validator