ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeq GIF version

Theorem qredeq 12234
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 9322 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
21adantr 276 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3 nncn 8990 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 277 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 nnap0 9011 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 # 0)
65adantl 277 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 # 0)
72, 4, 6divclapd 8809 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
873adant3 1019 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 / 𝑁) ∈ ℂ)
98adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 / 𝑁) ∈ ℂ)
10 zcn 9322 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∈ ℂ)
1110adantr 276 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑃 ∈ ℂ)
12 nncn 8990 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 ∈ ℂ)
1312adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 ∈ ℂ)
14 nnap0 9011 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 # 0)
1514adantl 277 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 # 0)
1611, 13, 15divclapd 8809 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℂ)
17163adant3 1019 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 / 𝑄) ∈ ℂ)
1817adantl 277 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑃 / 𝑄) ∈ ℂ)
1933ad2ant2 1021 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℂ)
2019adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℂ)
2153ad2ant2 1021 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 # 0)
2221adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 # 0)
239, 18, 20, 22mulcanapd 8680 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 / 𝑁) = (𝑃 / 𝑄)))
242, 4, 6divcanap2d 8811 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
25243adant3 1019 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2625adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2726eqeq1d 2202 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2823, 27bitr3d 190 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2913ad2ant1 1020 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℂ)
3029adantr 276 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℂ)
31 mulcl 7999 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
3219, 17, 31syl2an 289 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
33123ad2ant2 1021 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℂ)
3433adantl 277 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℂ)
35143ad2ant2 1021 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 # 0)
3635adantl 277 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 # 0)
3730, 32, 34, 36mulcanap2d 8681 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
3820, 18, 34mulassd 8043 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · ((𝑃 / 𝑄) · 𝑄)))
3911, 13, 15divcanap1d 8810 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
40393adant3 1019 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4140adantl 277 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4241oveq2d 5934 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · ((𝑃 / 𝑄) · 𝑄)) = (𝑁 · 𝑃))
4338, 42eqtrd 2226 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · 𝑃))
4443eqeq2d 2205 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4537, 44bitr3d 190 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4628, 45bitrd 188 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
47 nnz 9336 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
48473ad2ant2 1021 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
49 simp2 1000 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℕ)
5048, 49anim12i 338 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5150adantr 276 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5248adantr 276 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℤ)
53 simpl1 1002 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℤ)
54 nnz 9336 . . . . . . . . . . . 12 (𝑄 ∈ ℕ → 𝑄 ∈ ℤ)
55543ad2ant2 1021 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℤ)
5655adantl 277 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℤ)
5752, 53, 563jca 1179 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
5857adantr 276 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
59 simp1 999 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℤ)
60 dvdsmul1 11956 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑃))
6148, 59, 60syl2an 289 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∥ (𝑁 · 𝑃))
6261adantr 276 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑁 · 𝑃))
63 simpr 110 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑁 · 𝑃))
6462, 63breqtrrd 4057 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑀 · 𝑄))
65 gcdcom 12110 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6647, 65sylan 283 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6766ancoms 268 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
68673adant3 1019 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
69 simp3 1001 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
7068, 69eqtrd 2226 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
7170ad2antrr 488 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 gcd 𝑀) = 1)
7264, 71jca 306 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1))
73 coprmdvds 12230 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1) → 𝑁𝑄))
7458, 72, 73sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
75 dvdsle 11986 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑁𝑄𝑁𝑄))
7651, 74, 75sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
77 simp2 1000 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
7855, 77anim12i 338 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
7978ancoms 268 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
8079adantr 276 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
81 simpr1 1005 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℤ)
8256, 81, 523jca 1179 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8382adantr 276 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 simp1 999 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
85 dvdsmul2 11957 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑀 · 𝑄))
8684, 55, 85syl2an 289 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∥ (𝑀 · 𝑄))
8786adantr 276 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑀 · 𝑄))
88103ad2ant1 1020 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℂ)
89 mulcom 8001 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9019, 88, 89syl2an 289 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9190adantr 276 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9263, 91eqtrd 2226 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑃 · 𝑁))
9387, 92breqtrd 4055 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑃 · 𝑁))
94 gcdcom 12110 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9554, 94sylan 283 . . . . . . . . . . . . 13 ((𝑄 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9695ancoms 268 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
97963adant3 1019 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
98 simp3 1001 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 gcd 𝑄) = 1)
9997, 98eqtrd 2226 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = 1)
10099ad2antlr 489 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 gcd 𝑃) = 1)
10193, 100jca 306 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1))
102 coprmdvds 12230 . . . . . . . 8 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑁))
10383, 101, 102sylc 62 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
104 dvdsle 11986 . . . . . . 7 ((𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑄𝑁𝑄𝑁))
10580, 103, 104sylc 62 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
106 nnre 8989 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1071063ad2ant2 1021 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℝ)
108107ad2antrr 488 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∈ ℝ)
109 nnre 8989 . . . . . . . . 9 (𝑄 ∈ ℕ → 𝑄 ∈ ℝ)
1101093ad2ant2 1021 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℝ)
111110ad2antlr 489 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∈ ℝ)
112108, 111letri3d 8135 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 ↔ (𝑁𝑄𝑄𝑁)))
11376, 105, 112mpbir2and 946 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 = 𝑄)
114 oveq2 5926 . . . . . . . . . 10 (𝑁 = 𝑄 → (𝑀 · 𝑁) = (𝑀 · 𝑄))
115114eqeq1d 2202 . . . . . . . . 9 (𝑁 = 𝑄 → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
116115anbi2d 464 . . . . . . . 8 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃))))
117 mulcom 8001 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1181, 3, 117syl2an 289 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1191183adant3 1019 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
120119adantr 276 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
121120eqeq1d 2202 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑁 · 𝑀) = (𝑁 · 𝑃)))
12288adantl 277 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℂ)
12330, 122, 20, 22mulcanapd 8680 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · 𝑀) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
124121, 123bitrd 188 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
125124biimpa 296 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) → 𝑀 = 𝑃)
126116, 125biimtrrdi 164 . . . . . . 7 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑀 = 𝑃))
127126com12 30 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄𝑀 = 𝑃))
128127ancrd 326 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 → (𝑀 = 𝑃𝑁 = 𝑄)))
129113, 128mpd 13 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 = 𝑃𝑁 = 𝑄))
130129ex 115 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = (𝑁 · 𝑃) → (𝑀 = 𝑃𝑁 = 𝑄)))
13146, 130sylbid 150 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) → (𝑀 = 𝑃𝑁 = 𝑄)))
1321313impia 1202 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164   class class class wbr 4029  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   · cmul 7877  cle 8055   # cap 8600   / cdiv 8691  cn 8982  cz 9317  cdvds 11930   gcd cgcd 12079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  qredeu  12235
  Copyright terms: Public domain W3C validator