ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssres GIF version

Theorem funssres 5356
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)

Proof of Theorem funssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . 5 𝑦 ∈ V
21opelres 5006 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺))
3 ssel 3218 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
4 vex 2802 . . . . . . . . 9 𝑥 ∈ V
54, 1opeldm 4923 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
65a1i 9 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺))
73, 6jcad 307 . . . . . 6 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
87adantl 277 . . . . 5 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
9 funeu2 5340 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹)
104eldm2 4918 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐺)
113ancrd 326 . . . . . . . . . . . . . . 15 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1211eximdv 1926 . . . . . . . . . . . . . 14 (𝐺𝐹 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1310, 12biimtrid 152 . . . . . . . . . . . . 13 (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1413imp 124 . . . . . . . . . . . 12 ((𝐺𝐹𝑥 ∈ dom 𝐺) → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
15 eupick 2157 . . . . . . . . . . . 12 ((∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹 ∧ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
169, 14, 15syl2an 289 . . . . . . . . . . 11 (((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺𝐹𝑥 ∈ dom 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
1716exp43 372 . . . . . . . . . 10 (Fun 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1817com23 78 . . . . . . . . 9 (Fun 𝐹 → (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1918imp 124 . . . . . . . 8 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
2019com34 83 . . . . . . 7 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
2120pm2.43d 50 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
2221impd 254 . . . . 5 ((Fun 𝐹𝐺𝐹) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺) → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
238, 22impbid 129 . . . 4 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
242, 23bitr4id 199 . . 3 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
2524alrimivv 1921 . 2 ((Fun 𝐹𝐺𝐹) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
26 relres 5029 . . 3 Rel (𝐹 ↾ dom 𝐺)
27 funrel 5331 . . . 4 (Fun 𝐹 → Rel 𝐹)
28 relss 4803 . . . 4 (𝐺𝐹 → (Rel 𝐹 → Rel 𝐺))
2927, 28mpan9 281 . . 3 ((Fun 𝐹𝐺𝐹) → Rel 𝐺)
30 eqrel 4805 . . 3 ((Rel (𝐹 ↾ dom 𝐺) ∧ Rel 𝐺) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3126, 29, 30sylancr 414 . 2 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3225, 31mpbird 167 1 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wex 1538  ∃!weu 2077  wcel 2200  wss 3197  cop 3669  dom cdm 4716  cres 4718  Rel wrel 4721  Fun wfun 5308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-res 4728  df-fun 5316
This theorem is referenced by:  fun2ssres  5357  funcnvres  5390  funssfv  5649  oprssov  6138
  Copyright terms: Public domain W3C validator