ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssres GIF version

Theorem funssres 5240
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)

Proof of Theorem funssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5 𝑦 ∈ V
21opelres 4896 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺))
3 ssel 3141 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
4 vex 2733 . . . . . . . . 9 𝑥 ∈ V
54, 1opeldm 4814 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
65a1i 9 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺))
73, 6jcad 305 . . . . . 6 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
87adantl 275 . . . . 5 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
9 funeu2 5224 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹)
104eldm2 4809 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐺)
113ancrd 324 . . . . . . . . . . . . . . 15 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1211eximdv 1873 . . . . . . . . . . . . . 14 (𝐺𝐹 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1310, 12syl5bi 151 . . . . . . . . . . . . 13 (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1413imp 123 . . . . . . . . . . . 12 ((𝐺𝐹𝑥 ∈ dom 𝐺) → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
15 eupick 2098 . . . . . . . . . . . 12 ((∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹 ∧ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
169, 14, 15syl2an 287 . . . . . . . . . . 11 (((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺𝐹𝑥 ∈ dom 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
1716exp43 370 . . . . . . . . . 10 (Fun 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1817com23 78 . . . . . . . . 9 (Fun 𝐹 → (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1918imp 123 . . . . . . . 8 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
2019com34 83 . . . . . . 7 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
2120pm2.43d 50 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
2221impd 252 . . . . 5 ((Fun 𝐹𝐺𝐹) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺) → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
238, 22impbid 128 . . . 4 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
242, 23bitr4id 198 . . 3 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
2524alrimivv 1868 . 2 ((Fun 𝐹𝐺𝐹) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
26 relres 4919 . . 3 Rel (𝐹 ↾ dom 𝐺)
27 funrel 5215 . . . 4 (Fun 𝐹 → Rel 𝐹)
28 relss 4698 . . . 4 (𝐺𝐹 → (Rel 𝐹 → Rel 𝐺))
2927, 28mpan9 279 . . 3 ((Fun 𝐹𝐺𝐹) → Rel 𝐺)
30 eqrel 4700 . . 3 ((Rel (𝐹 ↾ dom 𝐺) ∧ Rel 𝐺) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3126, 29, 30sylancr 412 . 2 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3225, 31mpbird 166 1 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wex 1485  ∃!weu 2019  wcel 2141  wss 3121  cop 3586  dom cdm 4611  cres 4613  Rel wrel 4616  Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-fun 5200
This theorem is referenced by:  fun2ssres  5241  funcnvres  5271  funssfv  5522  oprssov  5994
  Copyright terms: Public domain W3C validator