ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssres GIF version

Theorem funssres 5133
Description: The restriction of a function to the domain of a subclass equals the subclass. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssres ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)

Proof of Theorem funssres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3059 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2 vex 2661 . . . . . . . . 9 𝑥 ∈ V
3 vex 2661 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 4710 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺)
54a1i 9 . . . . . . 7 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺𝑥 ∈ dom 𝐺))
61, 5jcad 303 . . . . . 6 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
76adantl 273 . . . . 5 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
8 funeu2 5117 . . . . . . . . . . . 12 ((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → ∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹)
92eldm2 4705 . . . . . . . . . . . . . 14 (𝑥 ∈ dom 𝐺 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐺)
101ancrd 322 . . . . . . . . . . . . . . 15 (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1110eximdv 1834 . . . . . . . . . . . . . 14 (𝐺𝐹 → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
129, 11syl5bi 151 . . . . . . . . . . . . 13 (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
1312imp 123 . . . . . . . . . . . 12 ((𝐺𝐹𝑥 ∈ dom 𝐺) → ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
14 eupick 2054 . . . . . . . . . . . 12 ((∃!𝑦𝑥, 𝑦⟩ ∈ 𝐹 ∧ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
158, 13, 14syl2an 285 . . . . . . . . . . 11 (((Fun 𝐹 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) ∧ (𝐺𝐹𝑥 ∈ dom 𝐺)) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
1615exp43 367 . . . . . . . . . 10 (Fun 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝐺𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1716com23 78 . . . . . . . . 9 (Fun 𝐹 → (𝐺𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))))
1817imp 123 . . . . . . . 8 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
1918com34 83 . . . . . . 7 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺))))
2019pm2.43d 50 . . . . . 6 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ dom 𝐺 → ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
2120impd 252 . . . . 5 ((Fun 𝐹𝐺𝐹) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺) → ⟨𝑥, 𝑦⟩ ∈ 𝐺))
227, 21impbid 128 . . . 4 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺)))
233opelres 4792 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐺))
2422, 23syl6rbbr 198 . . 3 ((Fun 𝐹𝐺𝐹) → (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
2524alrimivv 1829 . 2 ((Fun 𝐹𝐺𝐹) → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
26 relres 4815 . . 3 Rel (𝐹 ↾ dom 𝐺)
27 funrel 5108 . . . 4 (Fun 𝐹 → Rel 𝐹)
28 relss 4594 . . . 4 (𝐺𝐹 → (Rel 𝐹 → Rel 𝐺))
2927, 28mpan9 277 . . 3 ((Fun 𝐹𝐺𝐹) → Rel 𝐺)
30 eqrel 4596 . . 3 ((Rel (𝐹 ↾ dom 𝐺) ∧ Rel 𝐺) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3126, 29, 30sylancr 408 . 2 ((Fun 𝐹𝐺𝐹) → ((𝐹 ↾ dom 𝐺) = 𝐺 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ dom 𝐺) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)))
3225, 31mpbird 166 1 ((Fun 𝐹𝐺𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1312   = wceq 1314  wex 1451  wcel 1463  ∃!weu 1975  wss 3039  cop 3498  dom cdm 4507  cres 4509  Rel wrel 4512  Fun wfun 5085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-res 4519  df-fun 5093
This theorem is referenced by:  fun2ssres  5134  funcnvres  5164  funssfv  5413  oprssov  5878
  Copyright terms: Public domain W3C validator